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Summary. In treating dynamic systems, sequential Monte Carlo methods use discrete samples to
represent a complicated probability distribution and use rejection sampling, importance sampling
and weighted resampling to complete the on-line ‘filtering’ task. We propose a special sequential
Monte Carlo method, the mixture Kalman filter, which uses a random mixture of the Gaussian
distributions to approximate a target distribution. It is designed for on-line estimation and prediction
of conditional and partial conditional dynamic linear models, which are themselves a class of widely
used non-linear systems and also serve to approximate many others. Compared with a few avail-
able filtering methods including Monte Carlo methods, the gain in efficiency that is provided by
the mixture Kalman filter can be very substantial. Another contribution of the paper is the formulation
of many non-linear systems into conditional or partial conditional linear form, to which the mixture
Kalman filter can be applied. Examples in target tracking and digital communications are given to
demonstrate the procedures proposed.

Keywords: Conditional dynamic linear models; Dynamic systems; Fading channels; Sequential
Monte Carlo methods; State space models; Target tracking

1. Introduction

Dynamic systems are widely used in applied fields such as computer vision, economics and
financial data analysis, feed-back control systems, mobile communication, radar or sonar
surveillance systems, just to name a few. A main challenge to researchers in these fields is
to find efficient methods for on-line (in realtime) estimation and prediction (filtering) of the
ever-changing system characteristics, along with the continuous flow of the information
(observations) from the system.

For a Gaussian linear system, Kalman (1960) provided an ingenious algorithm (the Kalman
filter) for on-line filtering. To date, however, there has not been a universally effective
algorithm for dealing with non-linear and non-Gaussian systems. Depending on the features
of individual problems, some generalizations of the Kalman filter can be effective. A few well-
known generalizations are the extended Kalman filters (Gelb, 1974), Gaussian sum filters
(Anderson and Moore, 1979) and iterated extended Kalman filters (Jazwinski, 1970). Most of
these methods are based on local linear approximations of the non-linear system. More recently,
researchers have been attracted to a new class of filtering methods based on the sequential
Monte Carlo approach.

Sequential Monte Carlo techniques achieve the filtering task by recursively generating
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properly weighted Monte Carlo samples of the state variables or some other latent variables.
The samples and their weights are then used to estimate various system characteristics. These
Monte-Carlo-based methods are often more flexible in dealing with non-Gaussian models
and more adaptive to features of the target system. Since the appearance of two such meth-
ods, the bootstrap filter (also called the particle filter) for non-linear state space models
(Gordon et al., 1993) and sequential imputation for general missing data problems (Kong et
al., 1994), Monte Carlo filtering techniques have caught the attention of researchers in many
different areas that require dynamic modelling. Several modifications and improvements on
the method have been suggested (Berzuini et al., 1997; Carpenter et al., 1997; Doucet et al.,
1999; Hiirzeler and Kiinsch, 1998; Liu and Chen, 1995; Pitt and Shephard, 1999; Tanizaki,
1996). A sequential importance sampling framework has been proposed (Liu and Chen, 1998)
to unify and generalize these techniques. In the following context, we refer to this class of
methods applied to state space models as Monte Carlo filters.
Consider the general state space model of the following form: state equation—

Xepr ~ Si(C1X); (la)

observation equation —
Vet ~ &(1X141). (I1b)
Here the x, are unobserved state variables and the y, are observed signals. Lety, = (y, . . ., ¥,)

be the information that is available up to time z. Of interest in these systems are

(a) estimation of the state variable, say E(x,|y,), by using all available information;
(b) prediction of a future state, say E(x,,,|y,), and
(c) revision or smoothing of the previous state estimations given new information, e.g.

E(xtfs|y/)'

The main challenge is that these tasks need to be done on line, which makes it critical for a
filtering method to be able to modify the estimations or predictions quickly as new
observations come in.

In this paper, we focus on a special case of the state space model, the conditional dynamic
linear model (CDLM), which is a direct generalization of the DLM (West and Harrison,
1989) and has been widely used in practice (see Shephard (1994) for more examples). An
important feature of the CDLM, whose precise definition can be found in Section 2, is that,
given the trajectory of an indicator variable (vector), the system is Gaussian and linear, for
which the Kalman filter can be used. Thus, by using the marginalization technique for Monte
Carlo computation (Rubinstein, 1981), we derive a Monte Carlo filter that focuses its full
attention on the space of the indicator variable. We call this filter a mixture Kalman filter
(MKF). By doing so we can achieve a much smaller Monte Carlo variation than that of a
standard Monte Carlo filter applied directly to the state variables.

The MKF idea can also be applied to those systems that are only partially linear and
conditional Gaussian, i.e. the systems whose state variable consists of a component that is
conditionally linear and a component that is completely non-linear. By conditioning on an
indicator and the value of the non-linear component of the state variable, the system (both
the state equation and the observation equation) becomes linear and Gaussian. We call such
a system a partial CDLM (PCDLM). In this case, the linear component of the state variable
can be ‘marginalized’ out before running a Monte Carlo filter. The marginalization operation
is again achieved by the Kalman filter operation. We call this method an extended MKF
(EMKF).
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Given the importance of the CDLM in system modelling, it is perhaps not surprising that
approaches similar to the MKF described in this paper have been proposed earlier. Indeed,
the earlier work of Ackerson and Fu (1970), Akashi and Kumamoto (1977) and Tugnait
(1982) and recent work of Liu and Chen (1995) and Doucet ef al. (1999) are all closely
related. We shall provide a more detailed account on each of these approaches in Section 3.

The rest of the paper is organized as follows. In Section 2, we give a detailed description of
CDLMs and the proposed MKF. Section 3 is devoted to the PCDLMs and the EMKFs. In
Section 4, we give several applications of the proposed MKF and EMKF, including three
examples in target tracking and one example in telecommunications. A brief summary is
given in Section 5.

2. Model and method

2.1. Conditional dynamic linear models
A CDLM can be generally defined as follows:
x,=Hx,_,+ Ww, )
t AVe—1 AWt if A, -\ (2)
Ve=Gx, + Vo,

where w, ~ N(0, I), v, ~ N(0, I) and all coefficient matrices are known given \. The A,, which
can be either continuous or discrete, is a latent indicator process with certain probabilistic
structure. With discrete indicator variables, the model can be used to deal with outliers, sudden
jumps, system failures, environmental changes and clutters. With carefully chosen continuous
indicator variables, CDLMs can also accommodate DLMs with non-Gaussian innovations.

2.1.1. Example 1
A special CDLM is the linear system with non-Gaussian errors. Suppose that

X, = Hx,_,+ Ww,
ye=Gx,+ Vo,

where w, and v, are mixed Gaussian, i.e., conditional on the unobserved variable A, = (1;,, 75,),
the errors” distributions are w, |1, ~ N{p, (11,), X1(m1,)} and v,|1p, ~ N{pty(12,), Z(15,)}, where
Wy, Ky, X; and %, are functions of (1, 1,,). This model is clearly a CDLM with A, being its
latent indicator processes. This class of error models includes, in addition to the discrete
mixture of Gaussian distributions, the z-distributions, double-exponential distributions, the
exponential power family and logistic distributions. Even if w, and v, are not mixed Gaussian,
most of the time they can be satisfactorily approximated by a mixture of Gaussian distri-
butions. In Section 5 we analyse several CDLMs in practice.

Engineers have dealt with special forms of the CDLM since the 1970s. In pioneering work,
Ackerson and Fu (1970) considered a linear system operating in switching environments,
which they formulate as the model in example | with the A, being a finite discrete Markovian
indicator process. To deal with the computational difficulty, they proposed an approximate
filtering procedure in which the posterior probability of the indicator variable A, (given y,) is
recursively updated under a conditional independence assumption, and then used in a
Gaussian approximation of the posterior of x,. Their approach can be easily generalized to
update a segment (A,_, ..., A,) of the indicator process recursively (Tugnait, 1982). In
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dealing with the same CDLM, Akashi and Kumamoto (1977) introduced essentially a Monte
Carlo filter (i.e. a sequential importance sampler) for the indicator process in which an
‘optimal’ sampling distribution is used (Liu and Chen, 1998). Thus, Akashi and Kumamoto’s
algorithm is closest to the MKF proposed in this paper. However, the key resampling and
rejection steps are missing in their method, which makes it perform much less satisfactor-
ily. By formulating the MKF in a general sequential Monte Carlo framework, we can
incorporate various Monte Carlo techniques, such as resampling, rejection control and the
auxiliary variable approach, into the scheme and greatly extend the applicability of the
method. More recently, the methods used in Svetnik (1986), Liu and Chen (1995) and Doucet
et al. (1999) have all captured some attractive aspects of the CDLM and the MKF, but they
are limited in scope.

Several Markov chain Monte Carlo algorithms for CDLMs and other state space models
have been proposed (Carlin et al., 1992; Carter and Kohn, 1994; Shephard, 1994). In particular,
Shephard (1994) studied a class of ‘partial non-Gaussian’ models, a forerunner of CDLMs. He
also suggested an efficient Monte Carlo algorithm for the posterior computation, in which the
Gibbs sampler iterates between two big blocks, A, and x,, to improve efficiency. Carter and
Kohn (1994) presented another efficient Gibbs sampler for CDLMs in which the discrete
indicator A, is the only latent variable to be imputed and the state variable x, is explicitly
integrated out via a clever use of forward and backward Kalman filtering. A major problem
with all the Markov chain Monte Carlo algorithms for dynamic systems, however, is that they
cannot be effectively used for on-line estimation and prediction, whereas a fast and efficient on-
line algorithm in problems such as target tracking and digital signal processing is essential.

A bootstrap filter can be directly applied to the CDLM for on-line estimation and
prediction (see, for example, Avitzour (1995), Gordon et al. (1993) and Kitagawa (1996)). In
such a procedure, Monte Carlo samples of the state variable x, are recursively generated by
the sampling—importance resampling technique (Rubin, 1987). In this paper we propose a
more sophisticated algorithm by making further use of the conditional Gaussian structure,
and, similar in spirit to West (1992), using a mixture of Gaussian distributions to approx-
imate the target posterior distribution. In a CDLM, the mixture Gaussian distribution
becomes an obvious choice because of the efficient Kalman filter.

2.2. The method of mixture Kalman filtering
Lety, =(y,....»y)and A, =(Ay, ..., A). Let A, and A, be realizations of A, and A,
respectively. We observe that

M%WQZJN&MM%H%M%ﬂMn

where p(x,|A,, y,) ~ N{p, (X)), £,(A)}, in which (u,(X,), £,(A,)) can be obtained by running
the Kalman filter with given trajectory X,. The main idea of the MKF is to use a weighted
sample of the indicators,

1 1
S={owih), A ™)

to represent the distribution p(A,|y,), and then to use a random mixture of Gaussian distri-
butions,

1 m . . .
7 2w N, B0,
t j=1



Mixture Kalman Filters 497

where W, =X, w’, to approximate the target distribution p(x,|y,). For any integrable
function A(-), we approximate the quantity of interest E{i(x,)|y,} as

ECly) = 357 St [ 00 gt N7y B0 dx
l‘ Jj=1
where ¢ is the Gaussian density function.

Whereas a straightforward Monte Carlo filter uses a weighted sample of the state variable,
{(xgj o )}L;, to approximate p(x,|y,), the MKF operates in the indicator space, which is
equivalent to marginalizing out the x,. This approach has been shown to improve a Gibbs
sampling algorithm (Liu ez al., 1994) and a standard importance sampling scheme (MacEachern
etal.,1999). No clear theory isavailable so far in the sequential Monte Carlo setting. Our limited
experience shows that the efficiency gain of the MKF can be very significant. Intuitively, the
usual Monte Carlo filter recursively approximates the posterior of x, by a discrete sample,
whereas the MKF approximates the posterior of x, by a mixture of Gaussian distributions.
Note that the true posterior of x, in a CDLM is indeed a mixed Gaussian posterior, although
the number of its components increases exponentially with ¢.

Let KF)” = (s, (A(' )) ) (A(’ ))) which records the posterior mean and covariance matrix of
x,, conditional on y, and a given trajectory A, This can be obtained by the Kalman filter.
Then the MKF updating scheme consists of recursive applications of the following steps.

Forj=1,... m:

(a) generate )\H] from a trial distribution ¢, (A, |)\(’ ' KFY ))
(b) obtain KF§+1 by a one-step Kalman filter, conditional on {KF\, y,.,, )\fﬁ},
Py =H, TH\ +W, W\,
Sl = GA,HPMGL\M + Vi, V,AIH,
By =H,  p+ PI+IG/)\,HS;r11(yI+I -G, H,, 1), ©)
Y = Pm - Pt+1G;+IS;rll G)\,HPHI;

(¢) update the new weight as i/} = w x u/,, where

o __ pP Ay,
P71y g LAY, KED)

Uy =

(d) (resampling-rejuvenation) if the coefficient of Varlatlon of the w41 exceeds a threshold
value, resample a new set of KF,,; from {KF,+1, .. KF,+1} with probability propor-
tional to the weights mf+)1

When A, takes values in a finite discrete set Z, then a reasonable trial distribution for A,
is its predictive distribution ¢, (A4 |A;, KF,) = p(A41IA,, KF,, y,,1), which can be obtained
by inspecting all the possible values of A,. The incremental weight uffl is then simplified as

it 0 Pt KFY) = 52 p(risal A = i KE) plA gy = 1),
1S

Specifically, an MKF updating step in this case becomes, for j =1, . . ., m,

(i) foreach A, =i, i€ Z, run the Kalman filter to obtain

0 o Py A = iy KE) p(A,y = iIA),
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where p(A,, =i|A{”) is the prior transition probability for the indicator and
P(Viil Ay, =i, KFY) is a by-product of the Kalman filter

Py Ao Ar) ~ N(GA,HHA,HH;, Sit1)s 4)

(i1) sample a )\(/)1 from the set Z, with probablllty proportional to o,
(iii) let KF,H be the one with A, = )\,H,

(iv) the new weight is w'/, = w” 2., v’

Other choices of ¢,,, such as a ‘delayed sampling’ version

Q1N s1 A, KF) = pA 1A, KF, yigrs -0 Visa)

or its approximations, are also possible and sometimes more desirable.

Smith and Winter (1978) proposed a deterministic method called the split track filter for
CDLMs with a finite discrete indicator variable. Their method has a similar flavour to the
MKEF. In a split track filter, we always keep m trajectories of the latent indicators. At a future
time step, we evaluate the likelihoods of all possible one-step propagations from the m
trajectories held previously and retain the m updated trajectories with the highest likelihood
values. In contrast, our MKF selects the updated trajectories randomly, according to the
weights (which is the predictive likelihood value), and uses the associated weights to measure
how good each trajectory is. The important step of resampling is naturally built into the
MKF which can overcome some weaknesses of the split track filter. More sophisticated
sampling and estimation methods can also be incorporated. A comparison of the MKF and
the split track filter in target tracking is presented in Section 5.

When A, is a continuous random variable a simpler but less efficient algorithm is

(ii) sample a )\, 11 from p(A, +1|)\t ) the prior structure of the mdlcator varlable

(iii) run one step of the Kalman filter on {/\fi)l, KF!, y,.,} to obtain KFY ,+1, using equation

3), , .
(iv) the new weight is w'”, = wt” p(y,, 1A, KFY”) using expression (4).

The methods of Berzuini et al. (1997) and Pitt and Shephard (1999) can be applied to improve
the efficiency of this algorithm.

3. The extended mixture Kalman filters

3.1. Partial conditional dynamic linear models
Suppose that the state variable has two components: x, = (x,;, X,»). The following system is
called a PCDLM: state equations —

X = H/(X_10, A)xiy + WixZ10, A)w,,
Xio = gr(xt—l,Zv Ay, €);
observation equation —
Vi = Gr(xr,z’ At)xt,l + hr(xr,b A)+ Vz(xz,Za A)v,,

with w, ~ N(0, I) and v, ~ N(0, I). The matrices H,, G,, W, and V, are known given the
values of {x,_;,, x,,, A,}. The functions g, and &, are known and ¢, has a known distribution.

There is in fact no absolute distinction between a PCDLM and a CDLM because, if we
regard the ‘non-linear’ component x,, of the state variable in a PCDLM as part of the
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indicator variable, the system becomes a CDLM. However, unlike in CDLMs where we have
no interest in the latent indicator, inference about the non-linear component of the state
variable is often of great interest in a PCDLM. Note that in our model formulation the state
propagation of the non-linear component does not depend on the linear component.

3.1.1. Example 2: fading channel
Many mobile communication channels can be modelled as Rayleigh flat fading channels,
which have the following form: state equations —
X, = FX,.  + Ww,,
a, = GX,,
s~ pClsi1);

observation equation —
ye=as,+ Vo,

where s, are the input digital signals (symbols), y, are the received complex signals and «, are
the unobserved (changing) fading coefficients. Both w, and v, are complex Gaussian with
identity covariance matrices. This system is clearly a PCDLM. Given the input signals s,, the
system is linear in X, and y,. In Section 4 we show how to use the EMKF for extracting digital
signals transmitted over such channels.

3.1.2. Example 3: blind deconvolution
Consider the following system in digital communication:

q
Vi = Z} Oisi—i + €
where s, is a discrete process taking values on a known set S. In a blind deconvolution
problem, s, is to be estimated from the observed signals {y, . . ., y,}, without knowing the
channel coefficients 6;. This system can be formulated as a PCDLM. Let 8, = (0,, . . ., 0,,)
and x, = (s, . . ., 5,_,). We can define state equations
0[ = 0[—1’

x, = Hx,_1 + Ws,
and observation equation
Ve =0x,+¢,

where H is a ¢ x ¢ matrix with lower off-diagonal element 1 and all other elements 0 and
W =(1,0, ..., 0).In this case, the unknown system coefficients are part of the state variable
and are linear conditional on the digital signal x,. Liu and Chen (1995) studied this problem
with a procedure which is essentially an EMKF as described in the next subsection. This
PCDLM formulation can be easily extended to deal with a blind deconvolution problem with
time-varying system coefficients.

3.2. The extended mixture Kalman filter
The main idea of the EMKEF is to extract as many linear and Gaussian components from the
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system as possible, and then to integrate these components out (marginalize) using the
Kalman filter before running a Monte Carlo filter on the remaining components. Thus, in the
EMKEF we generate discrete samples in the joint space of the latent indicator and the non-
linear state component. More intuitively, because of the fact that

P(Xp1s Xply,) = p(Xa X2, ¥,) P(X2]Y)),

the approximation of p(x,;, x,,|y,) in the EMKF is decomposed as a Monte Carlo
approximation of the marginal distribution p(x,,|y,) and an exact Gaussian conditional
distribution p(x,|x,, y,). Let X5 = (X152, . . (2) The EMKF algorlthm is as follows:
supPose that at time ¢ we have a sample AV XD KEY, wiy, j=1, ..., m, where

D= (W, X, =08, x1D)) represents the mean and the covariance matrix of
p(x,ll)\(/) 52), y,) obtained by the Kalman filter. The EMKF updating scheme consists of
recursive application of the following steps.

Forj=1,... m,

(a) generate ()\,%1, xg)l ») from a trial distribution g, (A4, X4 2|)\(’), 512), KF(j))

(b) run one step of the Kalman filter conditioning on (A3}, xEH ,KFY, y,,,) and obtain

KFH—la
(c) calculate the incremental weight
( ) (1) )
[ P ! Xi41,25 )\H/—l|yH—1)
U1 =

o ) ) (1) (O] [0)]
P, X51Y) g (M Xiial AT, X0, KEYY)

and update the new weight as w'}, = w4/},

(d) resample as in step (d) of the MKF updating scheme if necessary.

From the weighted sample obtained at each time ¢, we can estimate quantities of interest, e.g.

Eh(x)lyis -y}~ Wi ZWWJMmMﬁﬂmumEWNM

J=

where W, =X wi. In particular,
RN @)
IM@MMHWM%WHZWJ 1) oy s 217) dovy,

E{hy(x,2) s - o v X W ZW%M”

j=1

4. Some numerical examples

4.1. Target tracking

Designing a sophisticated target tracking algorithm is an important task for both civilian and
military surveillance systems, particularly when a radar, sonar or optical sensor is operated in
the presence of clutter or when innovations are non-Gaussian (Bar-Shalom and Fortmann,
1998). We show three examples of target tracking using the MKF:

(a) targets in the presence of random interference (clutter);
(b) targets with non-Gaussian innovations;
(c) targets with manoeuvring.
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4.1.1. Random (Gaussian) accelerated target in clutter
Suppose that the target follows a linear and Gaussian state space model

x, = Hx,_; + Ww,,

5
y, = Gx, + Vo, ®)

where x, is the state variable (location and velocity) of the target and w, and v, are white noise
with identity covariance matrix. For targets moving in a straight line, we have x, = (s,, v,)
where s, is the true target location and v, is its current velocity. In this case

H:(é ;) W:aﬁ,<Tl/2), G=(1,0, V=0 6)

where T is the time duration between two observations and the random acceleration is
assumed to be constant in the period, with rate o2w,/T.
In a clutter environment, we observe m, signals {z,, . . ., z,, } at time #, with

m, ~ Bernoulli(p,) + Poisson(AA),

where p, is the probability that a true signal y, is detected, ) is the rate of a Poisson random
field and A is the area of the surveillance region. In words, at time ¢ the true signal has
probability p, to be detected, together with false signals, such as deceiving objects or
electromagnetic interference, which are distributed as a Poisson point process in the space.

By letting A, be the identifier of the target, Liu and Chen (1998) formulated the foregoing
problem into a CDLM. More precisely, they let A, = 0 if the target is not observed and
A, =i if the ith observed object is the signal generated from the true target, i.e. y, = z,,.
Then the system is linear and Gaussian with given A,, and the remaining z signals bear no
information. Some of their results are shown in Figs 1(a) and 1(b), which reveal the tracking
errors (the differences between the estimated and true target locations) of 50 simulated runs
of the tracking model, with r* =1.0, ¢ = 1.0, p,=0.9 and A =0.1. 500 Monte Carlo
samples were used for both the MKF and a standard Monte Carlo filter (i.e. a sampling—
importance resampling algorithm with resampling applied to the state variable x,). Here we
also tested the split track filter (Fig. 1(c)), which, at each step, kept 500 trajectories with the
highest likelihood values (recursively). The MKF performed much better than the other two
algorithms in this problem.

4.1.2. Random (non-Gaussian) accelerated target (no clutter)

Consider again model (5), but with non-Gaussian errors w, and v,. Here we analyse the case
when w, ~ , and v, ~ t,,, but the same approach can be applied to other mixed Gaussian
settings. By defining A, = (A,;, A,), where A,; ~ Xﬁf independently, we can rewrite model (5) as

x, =Hx,_;+ \/k ADW. ’
f -1+ ( 1/\/ DWe, if (A, M) = (A1, Ay,

yi=Gx, + (\/k2/\/)\2) Ve,,

with e, ~ N(0, I) and ¢, ~ N(0, I).

Simulations were carried out with the matrices (6) with 77=1 and no interference and
w, ~ t; and v, ~ t3. Table 1 shows a comparison of the MKF and a standard Monte Carlo
filter in terms of the number of times that the target was lost (|x, — X,| > 1200) and the central
processor unit (CPU) time for 100 simulated runs.
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Fig. 1. Tracking errors of 50 runs of (a) the MKF, (b) a standard Monte Carlo filter and (c) the split track filter for
a simulated one-dimensional target moving system

Fig. 2 shows the tracking mean-squared error (MSE), after the lost tracks have been
eliminated. We observe that, although it takes about twice as much CPU time as the standard
Monte Carlo filter with the same m, the MKF performs much more efficiently in the same
CPU time.

We also tested the idea of using a finite mixture of Gaussian distributions to approximate
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Table 1. Comparison of the MKF and a standard Monte Carlo filter

Noise variance ~ Monte Carlo Results for the Results for the
size m Monte Carlo filter MKF
CPU time (s) Number of CPU time (s) Number of
misses misses
20 9.49843 72 19.4277 1
50 20.1622 20 51.6061 1
0% = 16.00 200 80.3340 7 181.751 1
o, = 1600 500 273.369 4 500.157 1
1500 1063.36 3 2184.67 1
(=]
S
l‘\ @
= H
S .
= P
P o
b S
- ©
o N
S 1
y . Y g
g P 2 %
g 4 |
ro3 ) Q
' 8 -
o -
o T T T T T T T T T T T T
o] 20 40 60 80 100 0 20 40 60 80 100
Time Time

(a) (b)

Fig. 2. MSEs of (a) location and (b) speed of 50 runs of the MKF and a standard Monte Carlo filter for a
simulated one-dimensional target moving system with different Monte Carlo sample sizes ( , MKF, sample
size 20, eeeeenee , MKF, sample size 200; - - - - - , Monte Carlo filter, sample size 50; — — —, Monte Carlo filter,
sample size 500)

the ¢-distribution, i.e. approximating 7; with ¥, p; N(0, o7). Similar results were obtained.
The advantage of this approach is that a more efficient MKF can be used for discrete
indicators. However, the approximation causes some biases.

4.1.3. Manoeuvred target (no clutter)
A manoeuvred target in a clean environment can be modelled as follows:

X, = Hx,_y + Fu, + Ww,,
Vi =Gx,+ Vo,

where u, is the manoeuvring acceleration. Here we consider an example of Bar-Shalom and
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Fig. 3. (a) Position, (b) x-velocity and (c) y-velocity of a simulated two-dimensional manoeuvring target

Fortmann (1988) in which a two-dimensional target’s position is sampled every 7= 10 s. The

target moves in a plane with constant course and speed until £ = 40 when it starts a slow 90°
turn which is completed in 20 sampling periods. A second, fast, 90° turn starts at k = 61 and is
completed in five sampling times. Fig. 3 shows the trajectory of the target and its x-direction
and y-direction velocity in one simulated run. Consequently, the matrices in this example are

1 0 10 0
01 0 10
H=10 0 1 o |
00 0 1

1
o~ (!

0 00
1 00

)

F=

S = O W
—_ o W O
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Fig. 4. Root-mean-squared errors of (a) the x-position and (b) the x-direction velocity of 50 runs of the MKF for
a simulated two-dimensional target moving system with manoeuvring
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The slow turn is the result of acceleration inputs ] = u; = 0.075 (40 < ¢ < 60), and the fast
turn is from u) = —u; = —0.3 (61 < ¢ < 65). Other u,s are 0 (i.e. no manoeuvring).

To apply the MKF to this application, we need to specify the prior structure of u,. First, we
assume that manoeuvring can be classified into several categories, indicated by an indicator. In
particular, we assume a three-level model: 7/, = 0 indicates no manoeuvring (¢, = 0) and 7, = 1
and 7, = 2 indicate slow and fast manoeuvring respectively (i, ~ N(0, 07), o < o3). In this
study we used o] = 1 and o3 = 36. We also specify transition probabilities P(I, = j|I,_; = i)
= p;; for the manoeuvring status. Specifically, we assume p; = 0.8 and p;; = 0.1 for i # j (i.e.
the object is more likely to stay in a particular manoeuvring state than to change the
manoeuvring state). Second, there are different ways of modelling the serial correlation of the
u,. Here we assume a multilevel white noise model, as in Bar-Shalom and Fortmann (1988),
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where the u, are assumed independent, given the indicator. This is the easiest but not a very
realistic model. Other possible models are currently under investigation.

In Fig. 4 we present the root-mean-square errors of the MKF estimates of the target
position for 50 simulated runs. Comparing our result with that of Bar-Shalom and Fortmann
(1988), page 143, who used the traditional detection-and-switching method, we see a clear
advantage of the proposed MKF.

4.2. Digital signal extraction in fading channels

Consider example 2 in Section 3.1 with binary input signals s, = {1, —1}. The fading coef-
ficient takes complex values, with independent real and imaginary parts following the same
state equation. Simulations were done with the configurations

0 0 0 0.0376
o o I 0 R IR EEY,
F=1o o 0 o =1 o7 |
0 09391 —2.8763 2.9372 0.0376

0
W= 8 s V=r,
1

Bit error rate
3
[A

10

107 ] 1 | 1 )

10 15 20 25 30 35 40
Eb/No (dB)

Fig. 5. Bit error rate of extracting differential binary signals from a fading channel by using differential detection
(¥%), the MKF (O) and the delayed MKF (<): a lower bound that assumes exact knowledge of the fading
coefficients is also shown (+)
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i.e. both the real and the imaginary parts of «, follow an autoregressive moving average
ARMA(3, 3) process

a, —0.9391a,_, +2.8763q, , — 2.9372a,_; = 0.0376¢, + 0.1127¢,_, + 0.1127¢,_, + 0.0376e,_5

where e, ~ N(0, 0.01%). In the communications literature, this is called a (low pass) Butterworth
filter of order 3 with cut-off frequency 0.01. It is normalized to have a stationary variance 1.

We are interested in estimating the differential code d, = s,5,_,. Fig. 5 shows the bit error
rate of different signal-to-noise ratios, using the EMKF, the differential detection d, =
sgn{real(y,y¥ )} and a lower bound. The lower bound is obtained by using the true fading
coefficients «, and d, = sgn{real(a*y,y* ;,_;)}. The Monte Carlo sample size m was 100 for
the MKF. We also include the result of a delayed estlmatlon in which s, is estimated using
the samples sy generated by the MKF, and the weight w, +1 at time 7+ 1 (Liu and Chen,
1998). This delayed estimation can utilize the substantial information contained in the future
information y,,;, and hence is more accurate because of the strong memory in the fading
channel.

We can see that the simple differential detection works very well in low signal-to-noise
cases and no significant improvement can be expected. However, it has an apparent bit error
rate floor for high signal-to-noise cases. The MKF managed to break that floor, by using the
structure of the fading coefficients.

5. Discussion

We have proposed the MKF for on-line estimation and prediction in CDLMs. The method
was further extended to deal with PCDLMs. The MKF is a sequential Monte Carlo tech-
nique in which a marginalization operation is employed for improving its efficiency. All our
numerical examples showed that the MKF approach gains significantly over the earlier
sequential Monte Carlo approaches, e.g. the bootstrap filter and sequential imputation.
Furthermore, we note that other Monte Carlo techniques such as the auxiliary variable
method (Pitt and Shephard, 1999), Markov chain Monte Carlo updates (MacEachern et al.,
1999), delayed estimation (Liu and Chen, 1995) and the fixed lag filter (in an early version of
Pitt and Shephard (1999)) can all be combined with the MKF to improve its effectiveness
further. The development in this paper is thus an example to show that a sequential Monte
Carlo method is a powerful platform for designing efficient non-linear filtering algorithms.
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