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1 Introduction

Network formation—the creation of relationships, trading partnerships, or links—is a general phe-

nomenon underlying many areas of economic exchange and interaction, including buyer-seller net-

works and bilateral oligopoly. In these settings, externalities are pervasive as the value of a rela-

tionship between two parties is often influenced by relationships involving others. Though networks

have attracted a great deal of interest and research, few models have yielded sharp predictions about

equilibrium network structures and the division of surplus when there are externalities; addition-

ally, none to our knowledge have analyzed dynamic settings with bargaining where relationships

are constantly renegotiated and can be formed, broken, and reformed over time. As a result, our

ability to estimate primitives or predict counterfactual outcomes in these environments has been

limited.

This paper provides a tractable applied framework for the analysis of bilateral oligopoly that

can be taken to data, which allows for the computation and estimation of both equilibrium sur-

plus division and network formation when agents engage in repeated interaction. Our primary

application is in industrial organization settings with bilateral contracting between oligopolistic

firms in vertical markets: e.g., negotiations between manufacturers and retailers, health insurers

and medical providers, content providers and distributors, and software developers and hardware

providers.1 By predicting who contracts with whom, our model is also useful for counterfactual

analysis in settings where trading or contracting relationships between firms might change as a re-

sult of a policy intervention, merger, or other industry shock. We also demonstrate how a dynamic

model can identify both agents’ “bargaining power” and contracted transfers—objects which are

often unobserved in applied work—and detail an estimator that can recover them by using observed

equilibrium actions and networks.

We consider an infinite horizon, dynamic, discrete time network formation game between multi-

ple agents with endogenous transfers, and do not impose restrictions on the set of feasible networks

that may arise. At the beginning of each period, agents simultaneously announce the set of partners

with whom they would like to bargain; if two agents both choose each other, they are then able to

negotiate with one another in that period and potentially form a relationship. This determination

of a period’s “negotiation network” is a variant of the strategic network formation game proposed

by Myerson (1991). Next, all agents who can negotiate with one another engage in simultaneous

bilateral Nash bargaining to determine period contracts, where disagreement at this stage results in

termination of the relationship in that period.2 Finally, agents receive period payoffs as a function

of the realized network structure and negotiated period contracts. We assume these payoffs are

primitives of the analysis that may derive from some underlying subgame played among agents; as

they are a function of the entire network, the model admits any general form of externalities among

agents.

1The model can also be extended to other general network settings with transfers: e.g., horizontal mergers or
alliances, firm-worker negotiations, and so forth.

2Period contracts may represent wholesale prices, capitation rates, carriage fees, royalty payments, etc.
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The key feature of our model is that agents’ disagreement points from any bilateral bargain

are endogenously determined and are internally consistent with respect to the complete infinite

horizon game. These disagreement points contain the continuation values of moving to a network

state without that link; this captures the idea that agents repeatedly renegotiate (albeit perhaps

with some delay) while anticipating future changes to the network. Furthermore, dynamics are

introduced through both repeated interaction and the possibility that links may be costly to form,

maintain, or break—i.e., the cost of creating, keeping, or terminating a relationship with another

agent may depend on whether or not that link existed in the previous period—and may lead to

persistence of a given network over time.

In light of the complexity of the problem, the focus is on tractability and computability so that

the model can be taken to data. We restrict attention to Markov-Perfect equilibria (MPE) (Maskin

and Tirole, 1988) in which agents’ strategies (i.e., with whom they wish to negotiate in a given

period) are a function of the previous network structure or state. We provide assumptions that

guarantee the existence of an MPE, and provide a means of computation.

We highlight the importance of dynamics in several ways. In our model the division of surplus

within a given network depends on potential payoffs in all potential networks and not only strict

sub-networks (which is the often case in other models of bargaining and surplus division); failing

to account for this, or relying only on static Nash conditions, can affect predictions regarding

transfers and other underlying fundamentals of interest. Through a simple example, we show our

model admits the possibility that the “short-side” of the market in a bilateral oligopoly setting can

achieve full rent extraction; this prediction cannot easily be generated by standard static bargaining

models without additional assumptions.

Additionally, dynamics introduce a source of identification that is not present in static settings:

agents’ “bargaining powers,” represented in our model by Nash bargaining parameters, directly

affect agents’ outside options and value functions, and influences both which networks are sus-

tainable in equilibrium and the steady state distribution over those networks. This allows for the

estimation of both bargaining power and contracted transfers using only information on agents’

static profits, discount factors, and observed networks. This is in contrast to previous empirical

work in bilateral contracting, which, in order to estimate parameters of interest, has also required

making assumptions on the allocation of bargaining power (e.g., one side makes take-it-or-leave-it

offers) or knowledge of contracted transfers.3

We apply our framework to a stylized bilateral contracting game between hospitals and health

maintenance organizations (HMOs) using simulated data; this environment and the determinants

of negotiated transfers between medical providers and insurers has been the focus of recent re-

search given its central role in healthcare policy (Town and Vistnes, 2001; Capps, Dranove and

Satterthwaite, 2003; Sorensen, 2003; Ho, 2009; Gowrisankaran, Nevo and Town, 2013; Ho and Lee,

2013). In our example, period payoffs are generated from an underlying demand system for insur-

3E.g., Ho (2009), Crawford and Yurukoglu (2012), Grennan (2013) Using a model such as Stole and Zweibel (1996)
where agents’ outside options include the renegotiation of all other links also would allow the set of equilibrium
networks to be a function of bargaining power.
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ers and providers, and we compute MPE networks and transfers for a large number of simulated

markets. We find the complete or efficient network need not be visited in equilibrium, and that

the total number of equilibrium network structures remains small even as the number of agents

and potential network states increase. Using the same market-level primitives, we compare the

equilibrium predictions of our dynamic model with those of a static bargaining model; we show the

specification of bargaining power between agents matters greatly, and that incorporating dynamics

yields different predicted equilibrium transfers than a static model. Furthermore, we illustrate how

agents’ bargaining powers can be estimated from observing equilibrium play in a single market.

Finally, contributing to the study of horizontal merger impacts on input prices in vertical

markets (Horn and Wolinsky, 1988; Inderst and Wey, 2003), we use our model to study the effect

of hypothetical hospital mergers on negotiated transfers and profits while crucially controlling for

post-merger changes in network structure. We find that although mergers generally lead to higher

premiums and fewer patients served, their effect depends on the division of bargaining power

between firms. Furthermore, in certain circumstances, gains to merged hospitals in the form of

higher negotiated payments are occasionally offset by an inability to direct patients away from

utilizing higher cost, less efficient hospitals. Static merger analysis fails to capture the incentives

for hospitals to merge, predicting most hospital mergers would lead to lower hospital profits.

Related Literature. Our paper builds on and contributes to the literatures on strategic network

formation, dynamic bargaining, and contracting with externalities. As these literatures are vast, we

recognize that certain papers and areas of research may have been unintentionally omitted below.

However, it is worth emphasizing that our paper’s primary contribution is not theoretical; rather,

it is to propose a tractable and feasible framework that can be taken to data and can adequately

capture important features and details of real-world industries.

There is a large literature on non-cooperative models of network formation in static environ-

ments both with and without transfers (e.g.., Jackson and Wolinsky (1996); Kranton and Minehart

(2001); Bloch and Jackson (2007); Elliot (2013); see Jackson (2004) for a survey). In these static

papers, often the primary focus is on the existence of stable and efficient networks, and they vary

to the degree in which variable networks, heterogeneous agents, and externalities are admitted.4

Papers on dynamic network formation are less numerous, and include those that assume agents are

myopic (e.g., Watts (2001); Jackson and Watts (2002); Galeotti, Goyal and Kamphorst (2006)), and

those that assume agents are farsighted but cannot engage in side payments (e.g., Dutta, Ghosal

and Ray (2005)). Other work on surplus division in dynamic networked environments include

Manea (2011) and Abreu and Manea (2013a,b), which focus on the division of unit surplus between

networked agents, and papers on dynamic coalition formation games (e.g., Gomes (2005)). These

dynamic papers crucially restrict how the network can change in that the network is either fixed,

or can only either shrink or grow over time. More similar to our model is Gomes and Jehiel (2005),

which examines a dynamic setting in which a random proposer (as opposed to every agent) each

4See also Corominas-Bosch (2004); Polanski (2007); Melo (2013) for models of bargaining in fixed or exogenous
networks.
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period can make transfer offers to others in order to move between states. Our use of bilateral

Nash bargaining in a changing environment also relates to stochastic bargaining models (Binmore

(1987); Merlo and Wilson (1995); c.f. Muthoo (1999)), whereby in our setting the current network

affects payoffs and surplus to be divided.

Most previous work on contracting with externalities focuses on settings in which there is a

single agent on one side the market (Cremer and Riordan, 1987; Horn and Wolinsky, 1988; Hart

and Tirole, 1990; McAfee and Schwartz, 1994; Segal, 1999; Segal and Whinston, 2003). Exceptions

are primarily static models, and include Prat and Rustichini (2003), which limits the nature of

contracting externalities; and Inderst and Wey (2003) and de Fontenay and Gans (2013), which

address surplus division within fixed networks. These latter two papers also provide non-cooperative

foundations for allocation rules based on Shapley (1953) or Myerson (1977) values extended to

networked settings. Jackson (2005) discusses limitations of applying such solution concepts to

environments where both links and contracts are bargained over; similarly, we do not rely on

these cooperative based allocations of value as they do not provide guidance over which networks

arise in equilibrium, nor allow agents to anticipate changes to the existing network (other than

dissolving into subnetworks) when bargaining over both links and allocations. Furthermore, due to

the applications we have in mind where the contract space is often limited and there are contracting

externalities, we do not wish to presume efficiency (which often is closely tied to these concepts) in

our analysis.

Close to the spirit of our paper is Dranove, Satterthwaite and Sfekas (2008), who also model

insurer-medical provider negotiations, and compares predictions from a “naive” static bargaining

model and a more sophisticated bargaining model motivated by Stole and Zweibel (1996) in which

agents anticipate the future reactions of other agents. Dranove, Satterthwaite and Sfekas (2008)

allow for agents to have different “levels of rationality” in bargaining, and assume agents are

limited in their ability to anticipate future adjustments subject to a network change. Our work is

complementary in that it does not require all agents to immediately renegotiate upon a network

change, and solves for an exact MPE in a fully dynamic game.

Finally, although this paper aims to provide a tractable dynamic foundation for the empirical

study of network formation, we recognize that it is a highly stylized model and provide the explicit

caveat that certain applications may be ruled out given our assumptions. Our reliance on simulation

is a result of the complexity and intractability of general network formation games in a dynamic

context. In this light, our approach can be seen as in the spirit of the literature on industry dynamics

(Pakes and McGuire (1994); Ericson and Pakes (1995); Doraszelski and Pakes (2007)). Furthermore,

we build off several results in the literature on the estimation of dynamic games— particularly Hotz

and Miller (1993), Hotz et al. (1994), Aguirregabiria and Mira (2007), and Benkard, Bajari and

Levin (2007)—for the computation and estimation of our model.
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Figure 1: Potential Networks g0, g1, g2, g3 between firms U1, D1, D2. Period payoffs contained within
circles; tij(gk) represents payment between Ui and Dj under network gk.

2 A Stylized Example

We first provide a simple example of bilateral contracting among firms which highlights the main

innovations and objectives of this paper while clarifying the differences between a standard static

analysis and our dynamic analysis. In particular, we emphasize why the division of surplus between

agents for a given network fundamentally requires an understanding of surplus division in all other

potential networks.

Consider a repeated setting with 1 upstream firm U1 and two downstream firms D1 and D2.

D1 and D2 compete for consumers, but must obtain inputs from U1 to do so. Links between firms

represent trading relationships between firms: i.e., if a link exists between U1 and D1, U1 agrees to

supply D1 for a given period. Disregarding any payments between firms, the set of period revenues

that would accrue to each firm for any set of links—i.e., a network—is given in Figure 1, and are

taken to be a primitive of the analysis. Note that industry profits are maximized if U1 supplies

exclusively to D1 or D2; if U1 supplies to both downstream firms, total industry profits are reduced

(perhaps as a result of downstream competition). Hence, there are contracting externalities.

We assume that in each period, given a set of existing links defining a network g, U1 negotiates

with any downstream firm j with which it is linked a lump-sum payment t1,j(g) that is paid to U1.

Hence, if the current network was g3, total period profits to each firm would be πU1(t(g3)) = −4 +

t1,1(g3)+t1,2(g3), πD1(t(g3)) = 4−t1,1(g3) and πD2(t(g3)) = 4−t1,2(g3), where t(·) ≡ {t1,1(·), t1,2(·)}.
Given these primitives, consider the following two questions: (i) for any given network, what is

the division of surplus between agents (i.e., what are the values of ti,j(·)), and (ii) which network(s)

do we expect to arise in equilibrium?

With regards to the first question, as there is only one upstream firm in the example, one might

take the stance that U can offer take-it-or-leave-it offers (Hart and Tirole, 1990; Segal, 1999); al-

ternatively, one might assume downstream buyers could make competing offers as in Bernheim and

Whinston (1998). Choosing either extreme—an offer game or bidding game, using the terminol-

ogy of Segal and Whinston (2003)—may be difficult to motivate in certain applications; and this

approach does not easily generalize when there are multiple agents on both sides (e.g., if an addi-

tional upstream firm U2 enters the market as depicted in Figure 1(d)). This paper will nest both
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possibilities by assuming firms engage in simultaneous bilateral Nash bargaining in each period:

e.g., in network g3, the negotiated transfer t1,2(g3) will maximize the asymmetric Nash product of

U1 and D2’s gains from trade given U1 and D1’s trade t1,1(g3):

t1,2(g3) ∈ arg max[πU1(t(g3); g3)− π̃U1(D2; g3)]bU1 × [πD2(t(g3); g3)− π̃D2(U1; g3)]bD2 (1)

where π̃k(j; g) represents agent k’s outside option or disagreement point from failing to come to an

agreement with agent j in network g, and bk represents agents k’s Nash bargaining parameter. This

setup embeds the possibility that agents make take-it-or-leave-it offers (by setting bk = 0 for one

agent), or any intermediate surplus division.5 Nonetheless, regardless of the particular bargaining

protocol used, there is still a need to specify each agent’s outside option (π̃k).

In static bargaining environments, two approaches have been widely used. The first approach

assumes agreements between other agents are binding given disagreement and do not change (e.g.,

as in Cremer and Riordan (1987); Horn and Wolinsky (1988)).6 Under this assumption in the

current example, the outside option for D2 if it failed to come to an agreement with U1 in g3 would

be D2’s profits under g1, or π̃D2(U1; g3) = 0, and U1’s outside option would be what it would get

under g1 plus its negotiated transfer from D1 in g3: i.e., π̃U1(D2; g3) = −2 + t1,1(g3). This is similar

to Nash equilibrium reasoning in that agents do not anticipate changes to other bargains. Under

this assumption, if all agents had equal Nash bargaining parameters, one could solve (1) (and the

parallel equation for t1,1(g3)) to obtain t1,1(g3) = t1,2(g3) = 3.

Another approach, as utilized in Stole and Zweibel (1996), relaxes the assumption that transfers

do not change upon disagreement; they assume contracts are non-binding, and thus all other agents

can immediately renegotiate upon disagreement (although any disagreeing pair is prevented from

recontracting again).7 Under this assumption π̃U1(D2; g3) = −2 + t1,1(g1), where t1,1(g1) would be

what U1 and D1 would negotiate under g1 if U1 and D2 never could recontract:

t1,1(g1) ∈ arg max[πU1(t1,1(g1); g1)− π̃U1(D1; g1)]bU1 × [πD1(t1,1(g1); g1)− π̃D1(U1; g1)]bD1 . (2)

Here, since if U1 and D1 disagree the network will be g0 (as now U1 could no longer recontract with

either D1 or D2), the outside option for each agent would be 0; hence, if bU1 = bD1 , the equilibrium

value of t1,1(g1) = 6, which solves (2). Similarly, one can obtain t1,2(g2) = 6 by similar reasoning

in g2. Using these values to construct U1’s outside options when negotiating in g3, one can then

solve (1) under the new renegotiating assumption, and obtain t1,1(g3) = t1,2(g3) = 4. Note that

these payments are strictly higher than the static reasoning used before: e.g., since U1 obtains a

strictly higher payment when renegotiating with D1 under g1 than it would have under g3 (i.e.,

t1,1(g1) > t1,1(g3)), it has a better outside option and hence can extract greater rents from D2 when

5Such a setup is not without its own limitations; concerns will be discussed in the next section.
6Iozzi and Valletti (2013) highlight differences that may occur when other agents’ actions—in addition to

contracts—are not allowed to change under disagreement.
7de Fontenay and Gans (2013) show that contingent contracts (as used in Inderst and Wey (2003)), where contracts

are negotiated at the beginning but payments depend on the realized network structure, generates a similar division
of surplus given by the Myerson-Shapley value.
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negotiating t1,1(g3).

This second approach captures the flavor of dynamics in that U anticipates renegotiating with

D1 under g1 upon disagreement with D2 under g3 whereas the first approach does not. Nonetheless,

both approaches share the limitation that disagreements do not anticipate the potential for new

links to be formed, and neither allows for payments in networks that are not strict subnetworks to

influence negotiated rents. This is most stark in networks g1 and g2: although U1 can presumably

contract with either D1 or D2 exclusively, the presence of a competing downstream firm does

not influence the determination of t1,1(g1) or t1,2(g2) under either approach; both yield t1,1(g1) =

t1,2(g2) = 6 under equal Nash bargaining parameters. One might presume that U would have a

higher outside option than 0 since he could recontract with either D1 and D2, and thus U might

be able to capture a higher transfers even with the same Nash bargaining parameter.

Our paper’s model attempts to address this point directly and build upon both static approaches

by incorporating the following features: (i) agents can not only break, but also form new links in

the future (including with agents with whom they previously disagreed), (ii) adjustments to the

network may not be immediate and there may be some delay (including after disagreement), and

(iii) agents anticipate these changes and account for them in bargaining when computing expected

surpluses from contracting and outside options. We feel that these are particularly important

aspects of any model that attempts to capture network formation and bargaining in real world,

repeated settings.

We thus specify a game in which each period, links and relationships can be adjusted; however,

upon disagreement, contracts among other parties are not able to immediately change. Solving for

an equilibrium in this game endogenously determines the transition probabilities across networks,

which in turn can be used to construct an internally consistent measure of outside options. To

illustrate, we rewrite the negotiated transfer t1,1(g1) between U1 and D1 in (2) as:

t1,1(g1) ∈ arg max [(πU1(t1,1(g1); g1) + βU1VU1(g1))− βU1VU1(g0)]bU1

× [(πD1(t1,1(g1); g1) + βD1VD1(g1))− βD1VD1(g0)]bD1 (3)

where each agent k anticipates additional payoffs βkVk(g1) or βkVk(g0) upon reaching an agreement

or disagreeing. These represent the expected (discounted) continuation values to agent k of being

in network gl at the end of the period, and βk represents agent k’s discount factor. Implicitly,

the continuation values account for future renegotiation of payments as well as the fact that, e.g.,

although the network may be g0 in the next period upon disagreement, it is unlikely to remain

there forever.

Specifying this dynamic game also answers the second question of which networks we expect

to arise in equilibrium. The advantage of our dynamic model is that, as opposed to potentially

admitting several “stable” or equilibrium networks, it specifies a distribution over networks that are

reached in each period. This allows for a constantly evolving network—e.g., firms breaking and/or

recontracting over time—within equilibrium play. In the next section, we describe and specify our
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model; in Section 3.7, we return to this example and illustrate how results are substantively different

once we account for dynamics. In particular, we will show how our model will substantively change

predictions for t1,1(g1), for example, and the formulation will allow for U to capture even greater

share of the surplus in g1 as the number of downstream firms increases.

3 Model

We study an infinite horizon, discrete time, dynamic network formation game with transfers between

a set of n agents denoted by N = {1, 2, . . . , n}. At any point in time, agents may be linked to one

another thereby defining the current network structure or state. Let G ⊂ {0, 1}n×(n−1) represent

the set of all feasible networks: it may include all possible networks, or solely bi-partite networks

that admit only links between two subsets of agents (e.g., as in buyer-seller networks). We focus

only on networks which are undirected graphs, so that if i is linked to j in network g ∈ G, j is

linked to i in g as well; this is denoted by ij ∈ g. Let gi denote the set of links in network g

that contain agent i, and g−i denote the network that remains if all links containing agent i are

removed.8 Let Gi represent the set of feasible links which contain i, and Ni(g) the set of agents i

is connected to in state g.

Associated with any state g are per-period payoffs π(g, tg) ≡ {πi(g, tg)}i∈N , where tg ≡
{tij;g}ij∈g are per-period contracts; tij;g represents negotiated payments between agents i and j

in network structure g.9 We denote the space of feasible per-period contracts as T, which is de-

termined by the particular application being modeled: e.g., T ≡ R if contracts are lump-sum

payments or simple linear fees, or T ≡ Rn for n-part tariffs. We assume that the payoffs πi(g, ·)
are continuous in per-period contracts for any g and payments can only be made between linked

agents.

For our analysis, we will assume that per-period payoffs are primitives which arise from some

exogenously specified subgame, and that payoffs to each agent are uniquely determined for any

network structure and set of per-period contracts. E.g., in a buyer-seller setting, period payoffs

arise from a price competition game among downstream retailers for consumers given wholesale

prices tg paid to upstream manufacturers, where links in a given network g determine trading

relationships.10 Finally, we assume every agent i discounts future payoffs at constant rate β ∈ (0, 1).

3.1 Timing and Actions

Consider period τ , when the last period state was gτ−1. Each period of the game can be divided into

two stages: a stage in which the set of links open for negotiation is determined, and a stage in which

8In this regards, we abuse notation slightly for expositional clarity and interpret g ∈ G as both a network as well
as a set of links.

9Payoffs also may contain any per-period costs of maintaining links to potential trading partners.
10In applied work, these payoff functions π(·) (even for network structures never observed) can be recovered from

separate analysis (c.f. Ackerberg et al. (2007)). For instance, in the example given in Section 2, a structural model
of consumer demand for products and a model of retailer pricing can be utilized to obtain period profits for agents
given any network structure.
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agents bargain over per-period payments for each link open for negotiation. A link then exists for

a given period if it is first negotiated and then bargained over without coming to a disagreement.

We first provide a brief overview of the timing before detailing specifics.

1. Network Formation: Given last period state gτ−1, the set of links open for negotiation g̃ is

determined.

(a) Every agent i simultaneously announces the set of links ai ∈ Ai ≡ P(Gi) that he wishes

to negotiate over, where P(·) denotes the powerset over all feasible links. By announcing

ai, each agent receives a period payoff shock εai,i (privately observed by each agent before

the choice is made), where εi ≡ {ε1,i, . . . , ε|Ai|,i} is drawn independently each period from

a continuous density f εi (εi) with finite first moments, and |·| represents the dimensionality

of the set.

(b) Given the set of announcements a ≡ {ai}, the negotiation network g̃(a) is formed where

ij ∈ g̃(a) if and only if ij ∈ ai and ij ∈ aj ; i.e., a link ij is open for negotiation if and

only if both i and j announce it. Each agent i then incurs a cost ci(g̃(a)|gτ−1), which

represents the cost of negotiating existing or new links, or not negotiating (breaking)

links, from the previous network gτ−1.11,12

2. Bargaining: Given the negotiation network g̃, agents engage in bilateral Nash bargaining to

determine period contracts, the realized network gτ , and period payoffs.

(a) First, each pair ij ∈ g̃ observes a publicly observable pair-specific shock ηij , where

η ≡ {ηij}ij∈g̃ is drawn from continuous density fη, and ηij continuously affects period

profits for both i and j if they reach an agreement in the current period. We assume

payoff shocks enter additively into per-period payoffs.

(b) Any pair ij ∈ g̃ for which there exists no Nash bargaining solution (i.e., no gains from

trade conditional on their expectations of whether other pairs will maintain their agree-

ments) is unstable and immediately dissolves, generating a new network g̃′. If g̃′ also

has links that are unstable, those dissolve as well. This repeats until a stable network

gτ ⊆ g̃′ ⊆ g̃ (i.e., every pair ij ∈ g has gains from trade) is reached.

(c) Per-period contracts tgτ are determined via bilateral Nash bargaining, and each agent i

obtains total per-period payoffs πi(g
τ , η, tτg) ≡ πi(gτ , tτg) +

∑
ij∈gτ ηij .

One interpretation of the timing is that at the beginning of each period, each agent decides

which existing links from the previous period to drop or try to maintain, and which links that were

11The model can easily be extended to allow costs to depend on each agent’s own actions as well as the realized
negotiation network g̃: i.e., ci(ai, g̃(g)|gτ−1).

12An alternative modeling assumption would be to allow costs to depend on the previous period’s negotiation
network g̃(aτ−1) as opposed to the previous realized network gτ−1: this would ensure costs would only be incurred if
two agents did not attempt to contract in the previous period, as opposed to not having a link between them (which
could have been caused by a dissolution of unstable links). The state space would not increase and computation
would not be affected.
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not in existence to try to form. To maintain an existing link or form a new link, an agent must send

a representative to negotiate with the other party; a link is open for negotiation only if both agents

on each side send a representative. There may be differential costs of negotiating a link depending

on whether or not it was previously in existence; e.g., it may be more costly for two firms who

did not previously have a trading relationship to form a new link than for two firms who have

interacted in the past. Similarly, if a link was in existence but one party does not wish to continue

the relationship by sending a representative, a termination or breakup cost may be incurred.

All agents and representatives then observe all links that are potentially open for negotiation.

Each pair of representatives that meet subsequently engages in simultaneous Nash bargains (using

either the Rubinstein (1982) or Binmore, Rubinstein and Wolinsky (1986) non-cooperative imple-

mentations between each pair), with beliefs over the contracts and outcomes that will be reached

in other negotiations.13 We discuss additional issues related to and provide justification for this

particular bargaining framework in Section 3.3.

3.2 Strategies and Value Functions

In the network formation stage of each period, agents announce which set of potential links they

would like to open for negotiation. We restrict attention to Markov strategies denoted by σ =

{σi(g, εi)}, where σi : G×R|Gi| → Ai. Thus each agent conditions only on the last period network

state g and their draw of payoff shocks when deciding which links to announce.

Following Hotz and Miller (1993) and Hotz et al. (1994), we define P σi (ai|g) for a given vector

of strategies σ to be the conditional choice probabilities of action ai being chosen given last period

state g:

P σi (ai|g) = Pr(σi(g, εi) = ai) =

∫
I{σi(g, εi) = ai}fi(εi)dεi, (4)

where I{·} represents the indicator function. P σi (ai|g) can be interpreted as the probability an

opponent that does not observe εi assigns to i announcing ai in state g. Given agents’ period payoff

shocks ε are independent, the probability i assigns to the negotiation network being g′ given he

announces ai, the last period state is g, and other agents’ strategies are (perceived to be) σ can be

expressed as:

qσi (g′|ai, g) =
∑

a−i∈Πj 6=iAj

(
Πj 6=iP

σ
j (a−i[j]|g)

)
I{g̃(ai, a−i) = g′}, (5)

where a−i[j] is the jth action in the vector of actions of a−i of all other agents excluding i.

Let vσ(ai, g) represent i’s expected current and future profits (net of period payoff shocks ε) if

he chooses action ai in state g, and behaves optimally in future periods:

vσi (ai, g) =
∑
g′

qσi (g′|ai, g)
(
ci(g

′|g) + Eη
[
πi(g

′′, η, tσg′′) + βV σ
i (g′′) : g′′ = Γ(g′; η, V σ)

])
, (6)

13Collard-Wexler, Gowrisankaran and Lee (2013) provide a non-cooperative foundation for this bargaining outcome
in bilateral oligopoly when firms are allowed to make and receive multiple offers in each period.
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These choice-specific value functions takes expectations over the per-period contracting shocks η

and the resultant network g′′ that arises after bargaining occurs: i.e., g′′ = Γ(g′; ·) represents the

stable network which arises from g′ as unstable links dissolve. Γ and our notion of stable networks

and unstable links will be defined later. Finally, V σ ≡ {V σ
i (·)} are the set of value functions for

every agent i, where:

V σ
i (g) =

∫ [
max
ai∈Ai

(
εai,i + vσi (ai, g)

)]
fi(εi)dεi (7)

and represents i’s expected current and future profits at the beginning of any period (before the

realization of payoff shocks) from behaving optimally, given the last period network was g and all

other agents act according to strategies σ−i. Note that for a fixed set of payoffs {π(·)}, the right

hand side of (7) is a contraction mapping (c.f. Aguirregabiria and Mira (2002)), and thus there is

a unique V σ
i which solves (7) for any given σ.

3.3 Per-period Contracts and Nash Bargaining

To close the model, we define the process by which per-period contracts are determined. In turn,

this allows us to define the function Γ(g; ·), which finds the network that arises from any negotiation

network g as unstable links are broken.

We assume the set of all period contracts tσ(η) ≡ {tσg (η)} are determined endogenously via

(asymmetric) Nash bargaining. Assume g is stable (which we will define shortly); in this case,

every contract tij;g(η) ∈ tσg (η) is assumed to satisfy the following:

tij;g(η) ∈ arg max
t̃

[ [
πi(g, η, {t̃, tσ−ij;g}) + V σ

i (g)
]︸ ︷︷ ︸

Sσi,j(g;η,t
σ
g )

−
[
πi(g

′, η, tσ−ij;g) + V σ
i (g′)

]︸ ︷︷ ︸
Sσi,j(g−ij;η,tσ−ij;g)

]bij

×
[ [
πj(g, η, {t̃, tσ−ij;g}) + V σ

j (g)
]︸ ︷︷ ︸

Sσj,i(g;η,t
σ
g )

−
[
πj(g

′, η, tσ−ij;g) + V σ
j (g′)

]︸ ︷︷ ︸
Sσj,i(g−ij;η,tσ−ij;g)

]bji
(8)

where g′ = g− ij, tσ−ij;g ≡ {tσg \ tσij;g}, and bij , bji represent agent i and j’s Nash relative bargaining

parameters, which are primitives of the analysis. Thus, each tij;g(η) maximizes the (weighted)

Nash product of i and j’s gains from trade (represented by ∆Sσi,j(g; η, tσg ) ≡ Sσi,j(g; η, tσg )−Sσi,j(g−
ij; η, tσij;g) and ∆Sσj,i(g; η, tσg ) ≡ Sσj,i(g; η, tσg )−Sσj,i(g− ij; η, tσ−ij;g)), given the contracts of all other

linked pairs of agents and the strategies of agents employed in the larger network formation game.

The bargaining outcome in (8) is a version of the static bilateral bargaining equilibria between

an upstream supplier and downstream firms used in Cremer and Riordan (1987) and Horn and

Wolinsky (1988), which has been adapted in applied work to model negotiations between upstream

content providers and downstream multichannel video distributors (Crawford and Yurukoglu, 2012),

between medical device suppliers and hospitals (Grennan, 2013), and between hospitals and insurers

(Gowrisankaran, Nevo and Town, 2013; Ho and Lee, 2013). We extend the existing literature by

building on this framework, known for its tractability and ability to capture firm heterogeneity,
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and admitting endogenously determined dynamic outside options. In addition, though originally

motivated a cooperative solution concept, the asymmetric Nash bargaining outcome among multiple

firms that we leverage can be motivated via different noncooperative extensive forms.14,15 We

thus assume that agents engage in one of these extensive forms once the negotiation network is

determined in each period, thereby generating contracts given by (8).

Note the gains from trade for each agent (∆Sσi,j(g; η, tσ) and ∆Sσj,i(g; η, tσ)) consists of what

each agent would obtain if i and j link minus what each agent expects to obtain upon disagreement.

Importantly, in a significant departure from previous literature, we do not assume the disagreement

point if i and j fail to contract to be fixed nor a function of one particular network structure (which

would be implied if links and contracts were never renegotiated), nor do we necessarily assume all

other pairs immediately renegotiate (as in Stole and Zweibel (1996)). Rather, disagreement points

are defined to be what i or j expect to obtain if they do not contract in the current period plus

any impact on future payoffs given by continuation values V σ
i (g′) and V σ

j (g′). Our notion of a

disagreement point is thus internally consistent with the larger dynamic dynamic game: when two

agents fail to come to an agreement, period profits are derived from a network in which they are

not linked, but agents anticipate subsequent changes to the network. Indeed, i and j may even

anticipate contracting again in the future.

Nonetheless, there is some flexibility in specifying how agents perceive current period profits

will be upon disagreement. As written in (8), if agents i and j disagree, all other period contracts

that would have negotiated under network g (i.e., tσ−ij;g) are binding, even if the new network is

g′ = g − ij. This is similar to the assumption used in Horn and Wolinsky (1988) on contracts

(though we assume agents will respond to the new network structure g − ij for any other period

actions which affect the determination of πi(·)). We believe this is reasonable for the applied

settings we have in mind between firms: since bargains occur simultaneously and disagreements

in stable networks are off-equilibrium events, we do not assume that other firms can immediately

renegotiate their contracts. However, if we assume agreements are non-binding or can be made

contingent on the network as in Stole and Zweibel (1996), then our specification can be adjusted

14E.g., Collard-Wexler, Gowrisankaran and Lee (2013) show that a non-cooperative game with alternating offers
between many upstream and downstream firms admits the solution to (8) as an equilibrium outcome as the time
period between offers goes to 0. They extend the Rubinstein (1982) bargaining game to a bilateral oligopoly setting:
downstream firms simultaneously make take-it-or-leave-it offers in “odd” periods to upstream firms in g with whom
they do not have an agreement; upstream firms simultaneously accept or reject offers that are made. In the subsequent
“even” periods, upstream firms make take-it-or-leave-it offers to downstream firms with whom they do not have an
agreement, and downstream firms choose whether or not to accept offers. The game continues until all agreements
have been reached. The authors assume agents’ beliefs following off-equilibrium offers are passive (c.f. McAfee and
Schwartz (1994)) in that beliefs over the status or progress of other negotiations are not updated, and each agent
i discounts payoffs between periods by δi ≡ exp(−riΛ), where Λ is the time between periods and ri is i’s discount
rate. Alternatively, (1− δi) can represent the exogenous probability of breakdown after each offer is made (Binmore,
Rubinstein and Wolinsky, 1986). As Λ approaches 0, there exists an equilibrium with payoffs approaching (8) with
bij = ri/(λi + λj).

15Another motivation for this setup in the literature is assuming each firm sends different “representatives” to bar-
gain simultaneously with each of its linked partners; bargains happen simultaneously according to a non-cooperative
alternating offers game as in Rubinstein (1982), and agents from the same firm do not coordinate with one another
across separate bargains. See also Crawford and Yurukoglu (2012).
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so that the period profits under disagreement are a function of contracts that would have been

negotiated if i and j did not contract (i.e., tσΓ(g′;·)); in addition, given the outside option would then

depend on per-period contracts negotiated in other network states, agent gains from trade ∆Sσi,j
would be a function of all transfers tσ and not just those negotiated in one network state.

Unstable Networks There may be instances in which for certain pairs of linked agents {ij ∈ g},
draws of η, and perceived continuation values V , there is no value of tg in which both ∆Sσi,j(g; η, tσg )

and ∆Sσj,i(g; η, tσg ) are positive; i.e., there are no potential gains from trade. In this case, the Nash

bargaining solution is undefined. Without restrictions on π, this may occur in equilibrium due to

the presence of general externalities: e.g., an agent i by forming a new link or dissolving an existing

link may cause a link between agents j and k, which might have previously exhibited gains from

trade, to not be profitable to maintain.16

Any network g for which there exists no set of period-contracts tσg such that there are gains

from trade between all pairs of agents ij ∈ g is considered unstable. Conversely, if tσg exists which

satisfies (8) such that there are gains from trade between all connected agents, g is considered

stable.

Given there is some flexibility in the order in which links dissolve, we adopt the following rule:

if a network is unstable, then any link ij ∈ g in which there exists some t−ij;g such that ∆Si,j < 0

or ∆Sj,i < 0 for all tij;g is an unstable link and is immediately and simultaneously broken. This

will yield a new network, which will either be stable or unstable; if unstable, the process by which

unstable links dissolve continues. Eventually, a stable network is reached, which is given by the

function Γ(g; η, V ) and is defined recursively as:

Γ(g; η, V ) =


g if ∃tg s.t. ∀ ij ∈ g, ∆Sij(g; η, tg) ≥ 0,

Γ(g′; η, V ) otherwise, where g′ = g \ {ij ∈ g : ∃t−ij;g s.t.

∀tij;g, ∆Sij(g; η, {tij;g, t−ij;g}) < 0}

(9)

Note that Γ(g; ·) may also be the empty network.

3.4 Markov Perfect Network Formation Game

We can parametrize our model by the tuple (N,G, π,b, β, f , c), where π = {πi}, b = {bij}, β =

{βi}, f = {fη, f ε ≡ {f εi }}, and c = {ci(·)}.
16This is also why agents would anticipate moving to g′ ≡ Γ(g−ij; ·) as opposed to simply g−ij under disagreement

if contracts could be renegotiated within a period.
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3.5 Equilibrium

A (pure-strategy) Markov-Perfect equilibrium (MPE) of this game is a set of strategies σ∗ such

that for any proposer i, network g, and payoff shocks εi:

σ∗i (g, εi) = arg max
ai∈Ai

[
εai,i + vσ

∗
i (ai, g)

]
. (10)

In addition, given V σ∗ for any η, period contracts tσ
∗
g satisfy (8) for all stable g and Γ(g; ·) satisfies

(9) for all g ∈ G.

Existence Following Milgrom and Weber (1985) and Aguirregabiria and Mira (2007), we find

that an MPE of this game can be re-expressed in probability space. Let σ∗ be an MPE, and P σ
∗

be

the associated conditional choice probabilities. Note that P σ
∗

is a fixed point of the the following

best response probability function function Λ(P ) = {Λi(ai|g;P−i)}, where

Λi(ai|g;P−i) =

∫
I

{
ai = arg max

a∈Ai

(
εa,i + vPi (a, g)

)}
f εi (εi)dεi (11)

where vP are choice specific value functions derived from vσ in (6) defined explicitly in terms of

conditional choice probabilities P .

To prove there exists at least one fixed point of Λ and hence at least one MPE, it is sufficient

to prove that Λ is continuous in the compact space P ; the existence of at least one fixed point will

then follow from Brouwer’s theorem. From (6), we see that the continuity of vPi is guaranteed if

the expression Eη
[
πi(g, η, t

P
g ) + βV P

i (g) : g = Γ(g′; η,V P )
]

is continuous in P for all g, g′, where

V P
i is the value function given by (7) expressed in conditional choice probabilities. This in turn

follows given assumptions on the per-period payoff functions, the continuity of the density function

fη, and the following additional assumption:

Assumption 3.1. For all g and continuation values {V P
i (·)}, there exists η̄ in the support of fη

s.t. ∀η > η̄, (i) there is a unique set of per period contracts tPg (η) that solves (8); (ii) each contract

in tPg (η) is continuous in P and η; and (iii) πi(g, tg) is continuous in tg.

A.3.1 rules out the possibility that a small change in conditional choice probabilities Pi for some

agent results in a discontinuous change in Eη
[
πi(g, η, t

P
g ) + βV P

i (g) : g = Γ(g′; η, V σ)
]

due to either

the set of negotiated transfers changing discontinuously, the network g becoming unstable for any

realization of η, or πi(·) changing discontinuously. A sufficient condition that guarantees there is

always a realization of η which ensures g is stable is that fη has full support. Finally, since f εi is

assumed to be continuous, Λ is continuous in P , and the existence claim follows.

A.3.1 is stronger than necessary to guarantee existence; additionally, whether or not it holds

depends on the specification of π, and will be application dependent. In our applied example

discussed in the next section, we were always able to compute and find an MPE of the game even

with η = 0.
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3.6 Discussion

Multiplicity and Pairwise Stability Within a period, there is the potential for multiplicity in

both the network formation stage and the bargaining stage. We do not address the latter since it

will depend on the period profit functions π; we are inherently relying on an assumption such as

3.1 or an ability to consistently choose a unique set of transfers if there are many that satisfy (8).

At the network formation stage, one might imagine that our reliance on the Myerson (1991)

network formation game—through its requirement that two agents simultaneously announce a link

in order for it to form—would admit a similar kind of multiplicity issue as discussed therein: e.g., the

empty network could always be a Nash equilibrium since if everyone announced the empty network,

no agent could profitably deviate. However, our use of period shocks εi partially addresses this issue

since it rules out the possibility that pairwise profitable links (given the actions of others) would

not be negotiated due to miscoordination. To see why this is the case, consider a set of strategies in

which g is the realized negotiation and bargained network, but g ∪ {ij} would have been preferred

by both i and j.17 If link ij is not negotiated since agent j never proposes it, then (net the payoff

shock) i should be indifferent between proposing ij and not; thus, there will be strictly non-zero

probability that i proposes link j to negotiate. If this is the case, then j should place non-zero

probability on negotiating with i, and the original set of strategies could not be an equilibrium.18

Nonetheless, insofar that there are multiple pairwise stable networks which can be proposed (given

profits and continuation values), there may still an issue of which negotiation network(s) will be

reached; whether this is the case will depend on the underlying primitives of the model.

Finally, we believe that this issue of multiplicity is mitigated since we also enforce optimality at

all states, even those that might not be contained in the recurrent class (see Fershtman and Pakes

(2012) for a weaker equilibrium condition in dynamic games); however, we acknowledge that there

still may exist multiple MPE, each with potentially different recurrent classes of networks, and/or

different equilibrium strategies.

Relationship to Static Bargaining Models

The model as specified only introduces dynamics through frictions in forming and breaking links. If

ci(g
′|g) = 0 ∀ g′, g (or if β = 0), then the continuation value functions do not enter the determination

of period-contracts (given by (8)) in any meaningful way. Consequently, if agents propose a given

network g which is stable (i.e., there exists tg such that a solution to (8) exists for each link

ij ∈ g), the contracts negotiated will coincide with those from a static Nash-in-Nash bargains

solution, similar to Horn and Wolinsky (1988) if contracts are not allowed to be renegotiated upon

17I.e., period profits and continuation values in g∪{ij} are higher than under g given negotiated transfers for both
i and j.

18This reasoning is similar to Jackson and Watts (2002) who study a game in which links are randomly chosen
and can be formed if both agents prefer to do so, and broken if at least one agent chooses to do so. With some
small probability, however, the opposite occurs. They show that if a pairwise stable network exists, any stochastically
stable network—i.e., a network with steady-state probability bounded away from 0 as the probability of error goes
to 0—must be pairwise stable. Our use of errors ε and η perform similar functions in avoiding non-pairwise stable
states.
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disagreement, or Stole and Zweibel (1996) if they are allowed to be immediately renegotiated (but

not re-formed) in a given period. Even without dynamics, however, this model provides guidance

as to which network(s) are reached in equilibrium as agents are allowed to propose which links can

form in each period.19

3.7 Example Revisited

At this point, we return to the example discussed in Section 2 and depicted in Figure 1. Recall

under both static bargaining procedures we discussed, t1,1(g1) = t1,2(g2) = 6 under equal bargaining

power. When contracts among other agents are binding under disagreement, t1,1(g3) = t1,2(g3) = 3.

As noted previously, if either β = 0 or ci(g
′|g) = 0 ∀ g′, g, the predicted transfers in our dynamic

model would coincide with these as well. Under these assumptions, our game would essentially

become a repeated version of the static bargaining game, sharing these equilibrium divisions of

surplus. Equilibrium strategies for U would be to mix evenly between proposing a link to either

D1 or D2 (but never both); and D1 and D2 would always propose linking with U . Thus, the model

yields the prediction that as long as the variance of the ε shocks are small, only networks g1 and g2

should occur (with equal probability); as the variance increases, the probability of g3 being reached

increases as well.

However, once β > 0 and there are costs to changing the network structure, results are different.

First, let us consider the case where β = .9, agents each bear a period cost of 1 to form a link

that was not present in the previous period, and ε is distributed extreme value type I with variance

π2/8. In equilibrium, t1,1(g1) = t1,2(g2) ≈ 7.6, and t1,1(g3) = t1,2(g3) ≈ 4.4. Note that not only are

the transfers significantly higher than the static Nash results, but also those that would be received

under the Stole and Zweibel (1996) assumptions as well. To understand why U can obtain higher

transfers even with equal bargaining power, consider the bargain in g1. Since there are costs of

forming a new link, if U and D1 come to an agreement the next period network will likely be g1 as

well. However, upon disagreement, U will just as likely choose to link with D2 in the next period

as it would relink with D1, which would result in D1 being potentially without a trading partner

for several periods. This provides U with additional leverage and improves its outside option.

The steady-state distribution across states [g0, g1, g2, g3] ≈ [.00, .43, .43, .14], and the induced

equilibrium transition probabilities give an 80% chance of staying in either g1 or g2 conditional

on having been there in the previous period. Note that both D1 and D2 are receiving negative

period profits under g3 but g3 is still stable; this is because both downstream firms realize there

is sufficient chance that the network will transition from g3 to either g1 or g2 (which would be

extremely profitable for D1 or D2), thereby rationalizing the short-term losses incurred.

For β = .9, as the variance of ε goes to 0 and the cost of forming a new link becomes arbitrarily

small (but non-zero), the equilibrium network will tend to stay in either g1 or g2 in perpetuity.

However, U will be able to negotiate a higher transfer in either case, such that t1,1(g1) and t1,2(g2)

19The model also can easily be extended to allow for additional state variables (e.g., investment, capacity) which
would introduce additional sources of dynamics.
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approaches (24− 14β)/(4− 3β) = 114/13 ≈ 8.8.20

Bertrand Convergence Using the same logic, it can be shown that as β → 1, the negotiated

transfers approach full surplus extraction by U of 10.

Even for fixed β, as the number of potential competitors grows, the negotiated transfer also

increases. Consider the same example with one upstream firm, but now allow for multiple down-

stream firms D1, . . . , Dn. Let payoffs remain the same: if U is linked exclusively with any Di, Di

receives 10, U receives −2; if U links with k ≥ 2 agents, payoffs are −2k for U and 8/k for all

linked Di. All unlinked agents receive 0. Using the same logic, it can be shown for any set of Nash

bargaining parameters and an arbitrarily small but non-zero cost of forming a new link, as σε → 0,

n→∞, U will be able to extract (12−2β)/(2−β) from any Di it exclusively contracts with in our

model and will only contract with one agent. The reason it cannot extract full surplus for β < 1

is that Di can still destroy one period’s worth of stage profits upon disagreement, and thus retains

some leverage.

On the other hand, for equal Nash bargaining parameters, any static model will still yield the

result that U can at most extract 6 from an exclusive relationship no matter how many potential

alternative contracting partners it has.

3.8 Extensions to the Model

3.8.1 Endogenous Mergers

The model can be extended to allow for the possibility that certain agents can “merge” with

other agents, where merging implies that the two agents are permanently linked (ignoring the

possibility for dissolving a merger), and that they jointly propose new links and bargain over all

future contracts. This adaptation contributes to the literature on dynamic endogenous mergers

(Gowrisankaran (1999), Gowrisankaran and Holmes (2004)) within a framework of endogenous link

formation and contracting.

To simplify exposition, we focus on settings in which the set of agents who can merge is ex-

ogenously given, and that if these agents link, they can only merge. For example, in the case of

buyer-seller networks, although buyers can link and engage in trade with sellers, buyers are only

allowed to merge with other buyers (and sellers with other sellers). Exogenously we assume that

for any pair ij that can only merge, one agent (say i) will always be deemed the “acquirer” and the

other agent the “target.” If ij merge, j no longer retains any strategic actions: all future profits

20To see this, note equilibrium strategies will be that Di will always propose a link under {g0, gi, g3} and will
propose a link with equal probability otherwise; U will always propose to stay in g1 or g2 if that was the previous
network, and propose g1, g2 with equal probability otherwise. In this case, note negotiated transfers must solve:

t1,1(g1) = arg max
t

[(10− t+ βCD1)− (0 + .5β(CD + cD))]bD [(−2 + t+ βCU )− (0 + β(CU + cU ))]bU

where CD1 = (10 − t)/(1 − β) and CU = (−2 + t)/(1 − β) reflect the continuation values for D1 remaining in g1

and U remaining in either g1 or g2 in perpetuity, and ci is the cost of forming a new link for agent i. Note that
under disagreement, under equilibrium strategies U re-contracts with either D1 or D2 with equal probability. Letting
ci → 0 delivers the result.
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that would otherwise accrue to j are captured by i, and any links that are formed with i are also

formed with j: i.e., for any network g where ij ∈ g, Ni(g) = Nj(g). Since the merger payment is

not assumed to be positive or negative, which firm is the acquirer and which is the target is only

for expositional purposes.

We maintain the timing and structure of the main model, but when two agents i and j that

can merge propose links with one another, they do not negotiated over per-period contracts during

the bargaining stage, but rather over a lump-sum acquisition payment Tij;g, which satisfies the

following (given negotiated transfers tσ−ij;g for all other agent pairs):

Tij;g ∈ arg max
T̃

[[
πi(g, η, t

σ
−ij;g})− T̃ + V σ

i (g)
]
−
[
πi(g

′, η, tσ−ij;g) + V σ
i (g′)

]]bij
×
[[
T̃
]
−
[
πj(g

′, η, tσ−ij;g) + V σ
j (g′)

]]bji
(12)

where again, g′ = g − ij, and profits and continuation values for i in all networks where i and j

are merged (which includes network g) is the sum of profits for the merged entity (both i and j).

Note that if there exists no Tij;g such that both i and j have gains from trade (i.e., both terms in

the expression are positive), then the merger is not feasible, and does not form.

We note that more complicated models—e.g., in which two firms can either be merged or

contractually linked (where the distinction is whether or not they have to repeatedly contract, and

whether or not they internalize joint profits in their decisions), or if mergers can be dissolved—will

likely require expanding the state space. The advantage of this parsimonious specification in which

two firms can only be either contractually linked or merged is that the state space still remains

only the space of all potential feasible networks G.

3.8.2 Exclusive Contracts

In certain applications, an agent i may wish to propose an exclusive contract to agent j in which i

will only link with j if j does not link with any one else. We can extend our model to incorporate

this possibility by expanding each agent’s choice set to include the possibility of proposing exclusive

links: e.g., each agent i can announce a set of non exclusive links ai and exclusive links aei to form.

In each period, given the set of announcements a ≡ {ai, aei}, the negotiation network g̃(a) is formed

where ij ∈ g̃(a) if ij ∈ ai and ij ∈ aj , or ij ∈ aei and ij = {aj}. That is, if i proposes link ij

exclusively, link ij is open for negotiation if only if j announces only ij. The model proceeds as

before.

Notice that our model does not support imposing specific penalties to agents for breaking an

exclusive contract (either by no longer announcing it, or by contracting with other agents in future

periods). The reason is that in any given state g, the model cannot distinguish between an agent

who has voluntarily chosen to contract with only one other agent, and an agent who has accepted

an exclusive contract in a previous period.
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4 Computation & Estimation

4.1 Computation of Equilibrium

Although finite per-period payoff shocks η are used to guarantee existence, we detail computation

of the equilibrium assuming the support of fη is arbitrarily small so that η essentially does not

affect computation. This section follows closely the discussion in Aguirregabiria and Mira (2007).

Let σ∗ be an equilibrium, P ∗ be the associated conditional choice probabilities, and {V P ∗
i } the

equilibrium value functions for all agents. Note that in equilibrium, we can rewrite any agent i’s

value function as:

V P ∗
i (g) =

∑
ai∈Ai

P ∗i (ai|g)
[
π̃P
∗

i (ai|g) + eP
∗

i (ai, g)
]

+ β
∑
g′

V P ∗
i (g′)QP

∗
(g′|g), (13)

where π̃P
∗

i (ai|g) is i’s expected period profits (including costs of negotiating new and existing links)

from action ai, e
P ∗
i (ai|g) is the expected choice-specific payoff shock to agent i choosing ai, and

QP
∗
(g′|g) are the induced transition probabilities between states g and g′. Formally:

π̃P
∗

i (ai|g) =
∑
g′

qP
∗
(g′|ai, g)

[
ci(g

′|g) + πi(Γ(g′;V P ∗), tP
∗

g )
]
, (14)

eP
∗

i (ai, g) = E [εai,i|σ∗i (g, εi) = ai] =

∫
εiI {σ∗i (g, εi) = ai} fi(εi)dεi , (15)

QP
∗
(g′|g) =

∑
a∈ΠkAk

ΠN
j=1P

∗
j (a[j]|g)I

{
Γ(g̃(a);V P ∗) = g′

}
. (16)

Even though σ∗ is referenced in (15), eP
∗

i (ai, g) is a function only of P ∗ and choice specific

value functions vP
∗

i (ai, g) (c.f. Hotz and Miller (1993)).21 Consequently for any equilibrium, the

computation of value functions in (13) can be obtained via matrix algebra and rewritten in matrix

notation as:

VP ∗
i =

(
I− βiQP ∗

)−1( ∑
ai∈Ai

P∗i (ai) ∗
[
π̃P
∗

i (ai) + eP
∗

i (ai)
])

(17)

where I is the identity matrix, QP ∗ and P∗j are matrices of transition probabilities QP
∗
(g′|g) and

P ∗i (ai|g), and VP ∗
i , πP

∗
i , and eP

∗
i (ai) are vectors across all network states g; and ∗ denotes the

Hadamard, or element-by-element product. Importantly, values at any state g which are unstable

are replaced with those at state ΓP
∗
(g;V P ∗).

Define Υi(P ) ≡ {Υi(g, P ) : g ∈ G} to be the solution to (17) for an arbitrary set of probabilities

P ; i.e., Υi(P ) is the expected current and future profits of i given all firms (including i) behave

according to conditional choice probabilities P . We can follow the same procedure in Aguirregabiria

21Certain distributions of ε yield closed form expressions for eP
∗

i,i (·); e.g., if distributed type I extreme value with
variance (σπ)2/6, ePi (ai, g) = γ − σ ln(Pi(ai|g)) where γ is Euler’s constant.
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and Mira (2007) to show that any fixed point of the mapping Ψ(P ) ≡ {Ψi(g
′|g;P )}, where:

Ψi(ai|g;P ) =

∫
I

ai = arg max
a∈Ai

εa,i + π̃Pi (a, g) + βi
∑
g′

Υi(Γ(g′; Υ(P )), P )qPi (g′|a, g)

 fi(εi)dεi

will also be a fixed point of Λ, and hence will be an MPE.

This suggests a natural computational algorithm to compute an equilibrium: start with initial

values for strategies σ0, transition probabilities P 0, per-period contracts tP
0
, value functions VP 0

,

and at each iteration τ :

1. Obtain updated implied transition probabilities P τ (g′) from strategies στ−1, given by (4);

2. For each agent i, update V P τ
i either by value function iteration, or setting V P τ

i = Υi(P
τ )

using (17), where modified policy iteration can be utilized to approximate the matrix inversion

(c.f. Judd (1998));

3. Update per-period contracts tP
τ

and Γ(g;V P τ ) using (8);

4. Update agents’ optimal strategies given V P τ
i to obtain στ .

The algorithm is repeated until convergence. In practice, we stop when |VP τ+1 −VP τ | < ρ, where

ρ is some prespecified tolerance, and | · | denotes the sup-norm.22

On the “curse of dimensionality” One issue with using the entire network structure as the

state space is that the size of the space grows exponentially: the dimensionality is 2n×(n−1) in general

network formation games; in bi-partite network formation games, the dimensionality is 2B×S where

one side has B agents and the other S. For small n, computation is not problematic, as the entire

state space can be traversed rapidly. For larger games, reinforcement learning algorithms (c.f.

Pakes and McGuire (2001)) and other approximation techniques may be applicable.

4.2 Estimation of Nash Bargaining Parameters

In this section, we describe how unobserved parameters for agents—in particular, Nash Bargain-

ing parameters—can be estimated as a function of observed actions. In turn, this implies that

unobserved transfers t can also be recovered. Intuitively, if there are gains from trade between

two agents who form a link (given the actions of others), a static model would predict that the

link should form regardless of which agent obtains a larger share. However, in a dynamic model,

different values of Nash bargaining parameters will change each agent’s respective outside options

through their continuation values, and hence only certain parameter values will be consistent with

a link forming in equilibrium.

22Note steps 2 and 3 could be iterated to find the true value of Υ(Pn) for any given Pn; in practice, we found this
unnecessary.
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Let the data consist of m = 1 . . .M markets, each with primitives (Nm,Gm, πm, βm, fm, cm)

which are either observed, assumed, or can be separately estimated. We assume Nash bargaining

parameters b ≡ {bij} can be parameterized as a function of observable market characteristics zm,t

and parameters to be estimated θ.

In this section, we detail two approaches which vary in data requirements and computational

complexity. The first requires recomputing the MPE for each evaluation of θ, and will rely on either

uniqueness of equilibrium or an ability to compute all potential equilibria; however, it only requires

observing a sequence of realized network structures over time for each market. The second approach

does not require computing equilibria nor is constrained by potential equilibrium multiplicity;

however, it requires observing actions (i.e., links proposed) by each agent.

In section 5.3, we show how these estimators can be used for inference in simulated markets.

4.2.1 Estimation with Full Equilibrium Computation

We assume the econometrician observes a sequence network structures {gm,t} for markets m =

1 . . .M and periods t = 1 . . . T . There are two potential cases: (i) the econometrician observes

the complete sequence of networks in a market without gaps; or (ii) the econometrician sees a

potentially incomplete sequence of networks.

For case (i), we can define a pseudo-likelihood based on transition probabilities between networks

gm,t and gm,t−1:

R1
M (θ, P ) =

M∑
m=1

T∑
t=2

lnQP
(
gm,t|gm,t−1; θ,b(θ, zm,t)

)
, (18)

On the other hand, for case (ii) where there may be gaps between gm,t and gm,t−1, we can instead

rely on the following pseudo-likelihood:

R2
M (θ, P ) =

M∑
m=1

T∑
t=2

ln Q̃Pgm,1
(
gm,t; θ,b(θ, zm,t)

)
, (19)

where Q̃(·) is the steady-state equilibrium ergodic distribution over all networks given P and initial

network gm,1.

Since there is the possibility of multiple equilibria for a given θ, we define the MLE as:

θ̂MLE = arg max
θ

[
sup

P∈(0,1)N×|G|
RiM (θ, P ) subject to P = Ψ(θ, P )

]
, (20)

whereRiM (θ, P ) is either given by (18) or (19) depending on the nature of the data. If all equilibria P

can be computed for every θ and compared, then the estimator will be consistent, asymptotically

normal, and efficient (Aguirregabiria and Mira (2007)). For small n, this computation may be

plausible; however, the ability to compute all equilibria (or reliance on uniqueness) is a strong

assumption and will depend on the application.
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4.2.2 Two-Step Estimation

The second approach we propose does not require recomputing the equilibrium, nor does it require

an assumption on the uniqueness of equilibria. Rather, it assumes that data is generated by a single

Markov equilibrium. This method follows closely the two-step approach for estimating dynamic

games (c.f. Hotz and Miller (1993), Benkard, Bajari and Levin (2007)): first, policy functions are

estimated off of observed data and used to estimate both equilibrium value functions as well as value

functions from unilateral deviations by a single agent; second, estimates of structural parameters are

obtained by assuming observed data is generated from equilibrium play, and minimizing violations

of equilibrium restrictions. There are two substantive differences in applying the approach to our

setting. First, we nest the estimation of value functions within a fixed-point routine in order to

determine the set of transfers which are consistent with these value functions (as transfers are

assumed not to be observed in the data, yet are anticipated by agents for any course of play).

Second, as opposed to forming moments based on differences between value functions from observed

policies and alternative policies as in Benkard, Bajari and Levin (2007), we instead compute the

optimal policy for each agent for any set of parameters (which is feasible given the nature of our

problem), and find the set of parameters which minimize deviations between the computed optimal

policies and those observed in the data.

For the expositional purposes, we will describe the estimator for a single market. In this market,

we assume we observe a sequence of actions {at} for every agent (i.e., whom each agent negotiates

with each period), and the sequence of network states {gt}. We describe the estimation procedure

for a single market, noting that moments can be pooled across markets for inference.

First-stage Policy Estimates and Simulated Value Functions In the first-stage, we obtain

estimates of each agents’ policy functions σi : G × R|Gi| → Ai. These will allow us to estimate

value functions for each agent in any given state via forward simulation.

We assume for every agent i, the probability i chooses a given action ai in each state g, Pi(ai|g),

can either directly be observed or estimated from the data, and the distribution of i’s payoff shocks

f εi is known. In this case, as shown in Hotz and Miller (1993), differences in choice-specific value

functions vi(ai, g) (given by (6)) can be recovered. For example, if payoff shocks are distributed

type I extreme value, then

vi(a, g)− vi(a′, g) = ln(Pi(a|g))− ln(Pi(a
′|g))

for any two actions a, a′ ∈ Ai and the estimated policy function is given by:

σ̂i(g, εi) ≡ arg max
a∈Ai
{vi(a, g) + εa,i} = arg max

a∈Ai
{ln(Pi(a|g)) + εa,i}

Next, given any set of policy functions σ ≡ {σi, σ−i} (including those estimated from the data),

consistent estimates of value functions from agent i playing σi and all other agents playing σ−i can
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be obtained by approximating:

V̂i(g;σ; θ) = E

[ ∞∑
t=0

βti

(
πi(g

t, t)− c(gt|gt−1) + εti,σi(gt−1,εti)

)
| g0 = g, gt = Γ

(
g̃(σ(gt−1, εt)

)
; θ

]

where expectations are over current and future values of private shocks ε, Γ and t are consistent

with {V̂i} as specified in (8), and σ(gt−1, εt−1) dictates the profile of actions taken by all agents for

a given vector of shocks. To produce the approximation, we nest the forward simulation procedure

of Benkard, Bajari and Levin (2007) into fixed point routine in order ensure the consistency of t

and Γ with respect to the estimated set of value functions. The procedure is as follows:

1. For each state g, fix t0 and Γ0 at initial values.

2. For each iteration τ , update {V̂i(g;σ; tτ ,Γτ , θ)}i as follows:

(a) Start at state g0 = g. Draw error shocks ε0i for each agent i.

(b) For each agent i, calculate actions a0
i = σ̂i(g

0, ε0i ). Obtain the predicted negotiation

network g̃(a0) and new network g1 = Γτ (g̃(a0)). For each i, compute stage profits

πi(g
1, tτ )− ci(g̃(a0)|g1) + εa0

i ,i
.

(c) Repeat (a)-(b) starting at the new state for an additional T periods.

(d) Average each agent i’s discounted stream of payoffs for multiple simulated paths of play

to obtain an estimate of V̂i(g;σ; tτ ,Γτ , θ) for each i.

3. Update tτ+1 and Γτ+1 according to (8), given b(θ) and values of {V̂i(g;σ; tτ ,Γτ , θ)}i,g.

4. Repeat steps 2-3 until |V̂i(g;σ; tτ ,Γτ , θ)− V̂i(g;σ; tτ−1,Γτ−1, θ)| < ρ for all agents and states,

where ρ is again some pre-specified tolerance. Denote this value function V̂i(g;σ; θ).

There are a few crucial points to mention. First, note that for a given Γ and set of actions

a, the state transition from g is deterministic and is given by Γ(g̃(a)). If, however, we allow for

pair-specific payoff shocks η, then there would be a distribution over potential states that could

be reached for a given set of actions, and the state transition probabilities would also have to be

estimated. Second, estimation of V̂i(g;σ; θ) relies not only on Assumption 3.1 in that there exists a

unique t for any set of continuation values Vi(·), but also that for any set of policies σ, there is at

most one set of continuation values and transfers that are consistent with one another for a given

θ.

Second-stage Parameter Estimation In the second stage, we describe the procedure used to

estimate θ. For each candidate θ:

1. For each agent i, compute optimal policy σ̃i(·; θ) given all other agents are employing equi-

librium strategies σ̂−i:

(a) Start with candidate policy σ̃0
i = σ̂i.
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(b) For iteration τ , let σ̄τ ≡ (σ̃τi , σ̂−i). For every state g, obtain estimated value functions

V̂i(g; σ̄τ ; θ) as described in the first-stage.

(c) Update conditional choice value functions vσ̄i (·) for all actions and states given {V̂i(g; σ̄τ ; θ)}
and updated transfers, which in turn generate updated optimal policies σ̃τ+1

i (·).

(d) Repeat (b)-(c) until the conditional choice probabilities implied by the optimal policies

converge up to a pre-specified tolerance.23 Let the optimal policy for each agent i (given

all other agents play σ̂−i) be denoted σ̃i(·; θ).

2. Obtain an estimate of θ by minimizing the sum of squared differences between each agent’s

conditional choice probabilities implied by the optimal policy σ̃i(·; θ) and the policy σ̂i ob-

served in the data:

θ̂ = arg min
θ

∑
g

∑
i

∑
a∈Ai

(
P
{σ̃i,σ̂−i}
i (a|g)− P σ̂i (a|g)

)2


5 Application: Insurer-Provider Negotiations

To apply our framework, we analyze a stylized network formation game between health insurers

(e.g., HMOs) and medical providers (e.g., hospitals), where insurers negotiate with providers over

reimbursement rates for serving patients. Health insurers typically offer potential customers access

to a “network” of providers: if an insurer and a provider are able to agree on a payment scheme

under which the provider is willing to treat the insurer’s members, then the provider becomes part

of the insurer’s “network.” In general, little is known about how payments between insurers and

providers are negotiated in the private insurance sector, yet those determine over 40% of healthcare

spending (approximately $1 trillion). We analyze simulated markets to understand the networks

and negotiated payments that arise in a dynamic equilibrium; importantly, we allow for forward

looking agents and allow the link structure between insurers and hospitals to change over time.

We first detail the stylized stage game which is used to provide the underlying period-profit

functions π accruing to each agent for any given network structure. We then describe summary

statistics of simulated equilibria across several markets as bargaining power and the number of

agents change, study the relationship between observable market characteristics and negotiated

per-patient transfers, detail how the variation in equilibrium network structures across markets can

be used to identify bargaining power (and hence transfers) if they are unobserved, and finally, in

the next section, examine the impact of hospital mergers on industry profits, negotiated transfers,

premiums, and consumer welfare.

5.1 Stage Game Timing

For a given network structure g, the basic timing every period is as follows:

23E.g., if εi is distributed type I extreme value, Pσi (ai|g) = exp(vσi (ai|g))/(
∑
a∈Ai

exp(vσi (a|g))).
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1. HMOs set premiums to consumers based on a constant markup over the expected average

cost of an enrollee;24

2. Each consumer in a market chooses to join at most one HMO and pays the premium for that

insurer;

3. A certain proportion of consumers get sick, and choose to attend their most preferred hospital

in their HMO network.

Furthermore, we assume that hospitals must serve any patient who visits, and incurs a constant

marginal cost in doing so; any HMO without a hospital on its network does not enroll any patients;

and there is an outside option to an HMO that consumers may choose.

In our numerical analysis, we use a discrete choice model of consumer demand for insurance

plans and hospitals that follows the structure of Capps, Dranove and Satterthwaite (2003) and Ho

(2006); as in Pakes (2010), we draw market characteristics from distributions that mimic those in

Ho (2006). Further details, including the exact distributional assumptions for firm and consumer

characteristics and specification of profit functions, are provided in the appendix.

5.2 Equilibria: Network Structure and Transfers

We first simulate multiple markets of HMOs and hospitals with random draws from firm and

consumer characteristics. We vary the Nash bargaining parameters (referred to here as “bargaining

power”) so that the division of surplus between agents may differ. We consider 3 different scenarios:

equal bargaining power, in which bij = .5 ∀ ij; hospitals having greater bargaining power, given by

setting bij = .8 when i is a hospital and .2 otherwise; and HMOs having greater bargaining power,

given by bij = .8 when i is an HMO, and .2 otherwise.

Network Distributions Table 1 reports summary statistics of equilibria under different specifi-

cations. The first column lists the average number of networks which occur more than 10% of the

time in the equilibrium network distribution. Although the number of players and therefore the

total number of possible networks increases, the average number of networks remains small. With

3 hospitals and 2 HMO’s, there are 26 = 64 potential networks, yet the average number of networks

that occur frequently in equilibrium is less than 2.

The second and third columns indicate the frequencies with which the full network and the

efficient network occur more than 10% of the time in the equilibrium network distribution, where

efficient refers to the network which maximizes industry profits (i.e., combined HMO and hospital

profits). The probability of a full network being reached never occurs for just one hospital, which is

partially due to the fact that industry profits and premiums are higher due to greater downstream

insurer differentiation when the hospital is exclusive to one HMO. Indeed, the full network occurs

rarely even with multiple hospitals: one contributing factor is there is an incentive to not include

24Previous empirical work (e.g., Einav, Finkelstein and Cullen (2010); Handel (2013)) have used similar pricing
assumptions.
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Table 1: Simulated Equilibrium Network Distributions

“B-Pow” # Eq Full Eff. Single Single Single Single Active Exp.
Net Net Net (90%) (50%) & Full & Eff Hosp Links

1 Hosp Equal 1.03 0.01 0.88 0.97 1.00 0.01 0.88 1.00 1.00
2 HMOs Hospitals 1.01 0.00 0.91 0.99 1.00 0.00 0.91 1.00 0.99

HMOs 1.02 0.00 0.80 0.98 1.00 0.00 0.80 1.00 0.99

2 Hosp Equal 3.36 0.39 0.90 0.01 0.17 0.04 0.14 2.00 2.65
2 HMOs Hospitals 3.57 0.22 0.83 0.00 0.23 0.00 0.23 2.00 2.49

HMOs 2.67 0.01 0.92 0.01 0.73 0.01 0.67 1.99 2.30

3 Hosp Equal 1.92 0.00 0.72 0.01 0.05 0.00 0.01 2.99 2.88
2 HMOs Hospitals 1.89 0.00 0.54 0.01 0.15 0.00 0.10 2.94 2.55

HMOs 1.53 0.00 0.63 0.00 0.45 0.00 0.36 2.91 2.42

Summary statistics from 100 market draws for each specification. “B-Pow”: Equal - bij = .5 ∀ ij; Hospitals - bij = .8

when i is a hospital, .2 otherwise; HMOs - bij = .8 when i is an HMO, .2 otherwise. # Eq Net: Average number of

networks that occur more than 10% in the equilibrium network distribution (E.N.D.). Full Net / Eff Net : % of runs

in which full / efficient network occurs more than 10% in E.N.D. Single (x%): % of runs in which a single network

occurs more than x% in E.N.D. Single & Full / Eff: % of runs in which a single network occurs more than 90% in

E.N.D., and that network is full / efficient. Active Hosp: average number of hospitals that have contracts with at

least one HMO more than 10% of the time in E.N.D. Expected Links: expected number of bilateral links in E.N.D.

high cost hospitals (particularly insofar they lead to higher negotiated prices) since HMOs cannot

influence which hospital its own patients visit. In addition, the “efficient” network which maximizes

industry profits is not always reached, which should not be surprising given the limited contracting

space and presence of contracting externalities.

The third and fourth columns indicate the percentage of markets in which there is a single

network structure which occurs more than 90% or 50% of the time in the equilibrium network

distribution. Across specifications, this probability falls are more agents are present in the market.

The next two columns indicate the percentage of markets in which either the full network or the

efficient network occurs at least 50% of the time.

Active Hosp indicates the average number of hospitals that have a contract with at least one

HMO 10% of the time in the equilibrium network distribution. Very few markets have one hospital

excluded from contracting. Finally, the last column indicates the expected number of links that

are sustained in equilibrium.

Clearly, these statistics are dependent on the underlying primitives (e.g., the variance of the

idiosyncratic shock will change the number of equilibrium networks and probability of a single

network occurring); furthermore, as the number of firms increases, the number of total potential

networks and states does as well. Nonetheless, we stress that even with the same underlying

primitives, adjusting the Nash bargaining parameters changes equilibrium outcomes in substantive

ways, even as the number of agents and network states are held fixed. We continue to explore this

point in the following exercises.
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Table 2: Regression of Hospital Margins on Observables / Characteristics

Timing: Dynamic Static

Equal Hospital HMO Equal Hospital HMO
Coeff s.e. Coeff s.e. Coeff s.e. Coeff s.e. Coeff s.e. Coeff s.e.

Const. -2.40 1.33 0.72 1.43 1.96 1.48 21.77 0.73 23.94 0.63 18.31 0.69
Avg. Cost -0.94 0.05 -0.96 0.05 -0.77 0.07 -0.65 0.06 -0.56 0.05 -0.70 0.05

Cost-AC -0.23 0.07 -0.20 0.07 0.10 0.10 -0.23 0.08 -0.36 0.07 -0.16 0.07
# Patient -0.01 0.08 0.05 0.06 0.18 0.10 0.41 0.05 0.38 0.05 0.31 0.06

Total # Patients -0.04 0.04 -0.11 0.03 -0.12 0.05 -0.30 0.03 -0.27 0.02 -0.31 0.02
HMO Marg 12.03 0.52 11.58 0.49 8.67 0.68 2.04 0.33 1.66 0.27 3.86 0.37

R2 0.77 0.79 0.50 0.57 0.62 0.65

Projection of simulated equilibrium expected per-patient margins between hospital i and HMO j onto equilibrium

market observables as bargaining power varies (Equal - bij = .5 ∀ ij; Hospitals - bij = .8 when i is a hospital, .2

otherwise; HMOs - bij = .8 when i is an HMO, .2 otherwise). Results pool across 2x2 and 3x2 settings. Av. Cost:

average hospital marginal cost in the market; Cost-AC: difference between hospital’s marginal cost and average cost

in the market; # Patient (Total # Patients): expected number of patients of HMO j (from all HMOs) served by

hospital i; HMO Marg: expected HMO margins (premiums minus marginal cost). Extra Hospital: indicator for

whether there are 3 hospitals (instead of 2) in the market.

Predicted Transfers We next examine equilibrium hospital per-patient margins computed across

different specifications, and project them on market characteristics, where margins are defined as

per-patient transfers from HMOs to hospitals minus hospital costs for serving a patient. This exer-

cise is in the spirit Ho (2009) and Pakes (2010) to examine the role of various factors in determining

negotiated per-patient transfers between hospitals and insurers.

In our dynamic model, we focus on the expected per-patient margins received by each hospital

from each HMO markets with 2 HMOs and either 2 hospitals (where expectations are taken over

the equilibrium network distribution). We also examine a static specification (β = 0) where agents

do not anticipate future changes to the network, and disagreement points are given by static profits

in the the stable network (i.e., a network in which there exist gains to trade between all contracting

agents) which arises if two agents fail to contract. A purely-static model, importantly, cannot

determine which network arises in equilibrium, and only can determine which networks are stable.

We nonetheless use our dynamic network formation model to determine the equilibrium network

distribution given β = 0 to obtain expected values for margins and other market observables.

Table 2 reports results. We first focus on the results from the dynamic specification. As ex-

pected, hospitals receive higher per-patient margins (on average) when they have higher bargaining

power, and lower when HMOs have higher bargaining power. Both being in a market with higher

average costs and having higher costs than one’s competitor negatively impacts predicted hospital

margins (though the latter effect is not significant when HMOs have greater bargaining power).

Furthermore, consistent with previous findings and anecdotal evidence on quantity discounts, the

number of total patients served by a hospital reduces margins. Generally, higher HMO margins are

also associated with higher negotiated hospital margins.

The static specification generally shares similar signs as the dynamic model, with significant
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differences in magnitudes. In particular, it underestimates the sensitivity of negotiated transfers

on average market costs. A static model also predicts a greater effect of having a greater number

of patients served from a given HMO (holding fixed total patients served); this measure proxies

for the HMO having a worse outside option upon losing that hospital, which is mitigated in a

dynamic model as an HMO can either recontract with that hospital in the future, or with others.

This is consistent with the idea that by anticipating future renegotiation and continuation values,

hospitals’ outside options are slightly weaker and HMO outside options are slightly stronger in a

dynamic setting; indeed, once HMOs have greater bargaining power, a dynamic model predicts

much lower hospital margins.25 Indeed, we find, a static model predicts 5% - 19% higher transfers

on average than a dynamic model depending on whether there is equal or HMOs have greater

bargaining power.

5.3 Estimation of Nash Bargaining Parameters

One important takeaway from the simulated equilibrium network distributions is that differences

in the allocation of bargaining power has a significant impact on equilibrium networks. In this

section, we describe how observed network variation allows for the estimation of unobserved Nash

bargaining parameters and associated transfers.

We focus on 2x2 markets and assume Nash bargaining parameters are parameterized by θ =

bH ∈ [0, 1], where bij = bH if i is a hospital and bij = (1− bH) otherwise. For all other parameters

used to generate the data, we assume them to be known.

Full Equilibrium Computation We observe 20 network configurations {gm,1, . . . , gm,20} for

each market m drawn from the equilibrium steady state distribution (we do not assume that

these networks need be sequentially observed). We choose the value of bH which maximizes the

probability of observing the set of networks in the data (where the likelihood is given by (20) for

i = 1). In the absence of a proof of uniqueness, we are relying on a strong assumption of either

the uniqueness of the equilibrium network distribution across all equilibria, or the ability to select

the same equilibrium in the presence of multiplicity during the estimation routine. We make the

latter assumption given the estimation routine utilizes the same computational algorithm as the

data generating process. The degree to which this is problematic will depend on the application.

Table 3 summarizes the estimation results as we vary the size of the sample from 1, 5, and

10 different markets; for computational convenience, we conduct a grid search over [0, 1] where we

allow bH to vary by .05. With only a single market per sample, the 95% confidence interval is

not particularly informative; this partly occurs because there are some markets in which a single

network exists, which is consistent with a wide range of values for bH . However, once the sample

25This comes from the demand specification, in which consumers perceive HMOs are more or less bundles of
hospitals. E.g., consider the full network between 2 HMOs and 2 hospitals; if an HMO and hospital fail to come to an
agreement, the HMO may lose many of its patients to the other HMO while the hospital may not lose many patients
at all. Thus, accounting for dynamics—and the potential that the HMO can recontract again with the hospital—
strengthens its outside option.
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Table 3: Monte Carlo Estimates of bH

True bH 1 Markets / Sample 5 Markets / Sample 10 Markets / Sample

Avg. Estimate: 0.50 0.48 0.47 0.51
95% C.I.: (0.10,0.90) (0.20,0.70) (0.40,0.60)

Avg. Estimate: 0.80 0.60 0.76 0.77
95% C.I.: (0.10,0.90) (0.40,0.90) (0.60,0.80)

Avg. Estimate: 0.20 0.20 0.24 0.23
95% C.I.: (0.10,0.40) (0.20,0.50) (0.20,0.30)

Estimated values of hospital bargaining power bH for 40 samples of either 1, 5, or 10 markets in 2x2 settings where

a sequence of 20 networks were observed. Grid search conducted over bH in increments of .05.

size increases to include 5 markets, fewer values of bH are consistent with generating the observed

sequence of networks in the data. As a result, the average estimates become extremely close to the

true value of bH ; once 10 markets are used, the mean is within .02 and the 95% confidence interval

is within .15 of the true value.

Two-step Estimation We examine 40 samples consisting of one market observation, varying

hospital bargaining powers as in the last example, and assumed conditional choice probabilities

{Pi(a|g)} were observed (in addition to market level primitives).26 In all sample runs, using the

algorithm described in the previous section, we exactly recovered bi (on a .05 grid search) with just

one market, even though negotiated transfers—necessary to construct agent value functions—were

unobserved. Thus, presuming the optimality of observed conditional choice probabilities within a

market provides a great deal of information which can be used to infer both unobserved transfers

and relative bargaining power.

6 Application: Hospital Mergers

Consolidation in the US healthcare delivery system has increased dramatically in recent years, and

anti-trust regulators have become increasingly concerned with market concentration leading to de-

creased consumer welfare. However, regulators have historically had difficulty challenging mergers.

A key question in such anti-trust analyses is whether the potential benefits of consolidation, such

as increased efficiency, reduced excess capacity, lower transactional frictions, and higher risk tol-

erance outweigh the potential costs of increased market power. The methods introduced in this

paper provide a novel way of analyzing these effects by explicitly account for the renegotiation of

transfers and contracts following a merger.

In this section, we simulate counterfactual equilibrium networks and negotiated transfers sub-

sequent to hypothetical hospital mergers. In the current analysis, we focus on simulated markets

with 2 hospitals and 2 HMOs, and examine what occurs when hospitals merge exogenously into one

26We do not consider first-stage estimation error (introduced when recovering conditional choice probabilities from
the data) in this analysis.

30



Table 4: Merger Simulations

“B-Pow” +∆πH −∆πH5% +∆πM −∆πM5% +pM −pM5% +Ins −Ins5%

(i) Dynamic Equal 0.72 0.28 0.73 0.25 0.81 0.14 0.19 0.76
Hospitals 0.59 0.29 0.12 0.29 0.75 0.20 0.25 0.71

HMOs 0.80 0.17 0.76 0.24 0.85 0.11 0.15 0.77

(ii) Dynamic, Equal - - 0.97 0.01 0.99 0.00 0.01 0.99
+∆πH ≥ 0 Hospitals - - 0.15 0.07 1.00 0.00 0.00 0.95

HMOs - - 0.89 0.11 0.99 0.00 0.01 0.90

(iii) Static Equal 0.12 0.85 0.02 0.91 1.00 0.00 0.00 1.00
Hospitals 0.04 0.87 0.01 0.98 1.00 0.00 0.00 1.00

HMOs 0.25 0.71 0.02 0.87 1.00 0.00 0.00 1.00

(iv) Static, Equal - - 0.17 0.25 1.00 0.00 0.00 1.00
+∆πH ≥ 0 Hospitals - - 0.25 0.50 1.00 0.00 0.00 1.00

HMOs - - 0.08 0.52 1.00 0.00 0.00 1.00

Summary statistics from merger simulations, where: (i) and (ii) are from a dynamic model (β = .9), (iii) and (iv)

from a static model, and (ii) and (iv) condition also on markets where hospitals find it profitable to merge. “B-

Pow”: Equal - bij = .5 ∀ ij; Hospitals - bij = .8 when i is a hospital, .2 otherwise; HMOs - bij = .8 when i is an

HMO, .2 otherwise. +∆πH ,−∆πH5%: percentage of markets in which total hospital profits increases at all or falls by

5%; +∆πM ,−∆πM5%: percentage of markets in which total HMO profits increases at all or falls by 5%; +pM ,−pM5%:

percentage of markets in which both HMO premiums increase or fall by 5%; +Ins,−Ins5%: percentage of markets

in which total patients insured increases at all or falls by 5%.

“hospital system” per market. We model mergers in the following a stylized fashion: upon merg-

ing, all primitives in the market remain the same (e.g., hospitals do not realize any cost savings),

but equilibrium networks, negotiated transfers, and premiums charged by HMOs can change. We

assume hospital systems may negotiate different per-patient contracts for each hospital from each

HMO, but crucially internalize the joint payoffs across both hospitals; additionally, HMOs cannot

opt to only have one hospital on its network and must either have both or none. We thus attempt

isolate the impact of mergers on the bargaining, network, and pricing outcomes without taking a

stance on potential cost savings, quality improvements, or other efficiencies. This exercise is a first

step towards building a more complete framework for merger analysis.

Results Statistics from merger simulations across 100 simulated markets are shown in Table 4.

The table provides the percentage of markets in which: total hospital profits (πH) or total HMO

profits (πM ) increase, or fall by 5%; both HMO premiums (pM ) increase, or fall by 5%; and total

patients insured in the market increases, or falls by 5%. We again assume β = .9. Row (i) examines

mergers across all markets as bargaining power varies while (ii) conditions only on those markets in

which hospital expected profits increase subsequent to a merger (which can be seen as a proxy for

“voluntary” hospital mergers); (iii) and (iv) perform the same exercise in a static model (β = 0).

We first focus on the dynamic specification.

Generally, across all markets, approximately half of all hospital mergers tend to increase hospital

profits —this is consistent with the idea that mergers strengthen hospitals’ outside options with

respect to HMOs’, and allows them to extract higher transfers. Similar to the example discussed in

31



Sections 2 and 3.7, the monopolist upstream hospital system can play the two downstream HMOs

off one another.

However, what is surprising is that hospitals may be worse off from merging and, if given the

choice, may prefer not to merge; this can happen under all three bargaining power specifications,

but occurs nearly half the time when hospitals have greater bargaining power. To understand why

hospital profits can fall, it is worth noting that mergers which lead to reduced hospital profits

occur mainly in markets in which either one or both hospitals were excluded pre-merger from at

least one HMO network. This leads to a natural explanation: we find that in markets where one

hospital was excluded pre-merger, it is predominately the high cost hospital; post-merger, since an

HMO would have to include both hospitals on its network in order to have any patient demand,

utilization of the higher cost hospital would rise as it no longer can be excluded. Key to this effect

is the inability of HMOs to steer patients towards the lower cost hospital if it had both hospitals

on its network.27 When hospitals already have greater bargaining power, the gains from merging

through outside options are smaller and more likely to be offset by inefficient utilization.

Another interesting observation is that when hospitals have greater bargaining power, HMOs

are generally opposed to hospital mergers as their profits fall. However, under equal bargaining

power or when HMOs have greater bargaining power, HMO profits tend to increase when hospitals

merge—as a result, HMOs may actually not oppose hospital mergers in many situations. This may

be an artifact of the fixed markup rule: HMO per-patient premiums and hence expected profits

are increasing in the transfers paid to hospitals, while transfers paid to hospitals are increasing

in hospital bargaining power. Thus, insofar HMO markups were set too low, slightly increasing

transfers and premiums can lead to higher HMO profits. But when transfers become too high (as

hospital bargaining power increases), HMO profits fall.

We next examine the impact of mergers on other market outcomes, particularly those that

influence consumer welfare. First, note hospital mergers may lead to more patients being insured

in a market—this primarily occurs as the result of a previously excluded hospital (e.g., a hospital

that has only one active contract with an HMO) being included on both HMOs as a consequence

of the merger. Secondly, mergers may also occasionally lead to reduced premiums. Although this

may arise due to fiercer price competition among HMOs, we have assumed a simple pricing model

(fixed markups for premiums) which does not admit that explanation here. Rather, that premiums

can fall after hospitals merge—particularly when hospitals have greater bargaining power—can be

explained by the fact that hospitals better internalize the impact of increasing their own per-patient

rates on total patient flows upon merging. I.e., if a hospital increased its rates for a given insurer,

premiums would rise and fewer patients would be insured; pre-merger a hospital only would only

care about the reduction in their own patient volume. Consequently, if hospitals possessed greater

bargaining power and hence captured a larger share of industry rents, they would have an incentive

to lower negotiated per-patient rates in order to increase total patient volume. Nonetheless, for

27This has been assumed in the current specification; recent work has studied the ability of insurers to direct
patients to certain providers via physician incentives (Ho and Pakes, 2013).
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those mergers in which hospitals find it profitable to merge, this effect does not often occur; in

general, mergers seem to predominantly lead to higher premiums and fewer patients insured.

Comparison to Static Model We next turn to the simulation results from a static merger

model, where both pre and post merger profits are computed assuming β = 0. Here, negotiated

transfers do not internalize what transfers would be in alternative network structures, nor anticipate

future changes to the network.

The most striking result, seen in row (iii) from Table 4, is that the vast majority of potential

hospital mergers are predicted to lower hospital profits. A static model assumes a merged hospital

system receives 0 patients from an HMO upon disagreement; since it does not allow for renego-

tiation, there is no ability for the hospital to have the HMOs compete against one another when

determining rates (as in our stylized example discussed in the previous section). Hence, merging

would be predicted to harm hospitals’ outside options by reducing their flexibility to selectively

contract without providing any significant benefit. This is suggestive that static models under-

stimate the incentives for consolidation by medical providers and understate the degree to which

industry rents are captured by the more concentrated part of the market.

Summary In this exercise, there are several takeaways. First, the presumption that voluntary

hospital mergers tend to reduce consumer welfare absent cost savings and quality improvements

seems to have merit; though under certain conditions, consumer welfare can actually increase post-

merger (though not when such mergers are voluntary), this occurs infrequently. Second, HMOs

and hospitals do not necessarily have opposed interests when evaluating mergers; as shown, with

fixed markups, industry profits can rise for both sides of the market while consumer welfare falls.

Third, static bargaining models fail to adequately capture hospital incentives for merging, as the

vast majority of simulated markets would predict that hospitals do not wish to merge.

7 Concluding Remarks

We have developed a model of dynamic network formation and bargaining in the presence of exter-

nalities for use in applied work, and explored its usefulness in a stylized model of health insurance-

hospital negotiations. Dynamics are important to consider in such industries where agents interact

repeatedly and networks change over time, and incorporating them yields substantively different

predictions than static models. We have demonstrated the feasibility of recovering estimates of

unobserved bargaining power and transfers using only observed equilibrium networks or actions.

The framework is useful for understanding equilibrium surplus division and network formation in

bilateral oligopoly, and can help analyze potential policy changes or mergers by predicting future

network changes and recontracting decisions among firms. Finally, we have stressed the impor-

tance of dynamic considerations in the context of hospital mergers: static approaches drastically

understate the incentives for hospitals to consolidate by underestimating the extent to which the

concentrated side of the market can capture surplus.
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A HMO Hospital Application

A.1 Model Preliminaries

We analyze a market with M HMO plans, H hospitals, and C consumers. Each HMO j and hospital k possesses
a vector of characteristics θMj and θHk respectively. Individuals are divided among R different demographic groups,
where group r makes up share σRr of the population and values HMO and hospital characteristics according to the
coefficients βMr and βHr respectively. We assume any hospital can contract with any number of different HMOs, and
similarly any HMO can contract with any number of hospitals: i.e., G ≡ {0, 1}M×H . Recall Nk(g) denotes the set
of HMOs of which that hospital k is a member; similarly, Nj(g) represent the set of hospitals that are in HMO j’s
network of providers.

Individual Choice We assume every individual will be hospitalized with probability γ. If sick, in order to use
a particular hospital k ∈ H, an individual needs to have enrolled in an HMO plan j with j ∈ Nk(g) if the current
network structure is g. Each HMO j charges a premium to its members pj(g). There is also an outside option which
provides the individual with necessary health care in the case of illness – the utility of this option is normalized to 0.

Let individual i be part of demographic group r. We define an individual i’s utility from using hospital k as

uHi,k = αHr θ
H
k + ωi,k (21)

where ω is distributed iid Type I extreme value. From this formulation, we can define an individual i’s utility from
enrolling in a given HMO j that has a set of hospitals Nj(g):28

uMi,k(g) = αMr θ
M
k − αP pk(g) + γ

ln(
∑

h∈Nk(g)

exp(αHr θ
H
h ))

 + εi,k (22)

where ε is also distributed iid Type I extreme value.
With this linear utility function and distribution on error terms, we can calculate the the (expected) share of the

population that chooses HMO j given any particular network structure g as follows:

σMj (g) =
∑
r∈R

σRr
exp(αMr θ

M
j − αpj + γ ln(

∑
h∈Nj(g) exp(αHr θ

H
h )))

1 +
∑
m∈M (exp(αMr θ

M
l − pl + γ ln(

∑
h∈Nm(g) exp(αHr θ

H
h ))))

=
∑
r∈R

σRr σ̃
M
j,r(g)

We use σ̃Mj,r(g) to represent the share of demographic group r that chooses HMO plan j.
Define the demographic distribution of individuals within each HMO plan (i.e., the share of people who use HMO

plan j who are part of demographic group r) as follows:

σ̃Rr,j(g) =
σRr σ̃

M
j,r(g)∑

s∈R σ
R
s σ̃

M
j,s(g)

Thus, the share of HMO plan j’s customers who actually will be sick and need to use hospital k ∈ Nj(g) can be
written as:

σHk,j(g) = γ
∑
r∈R

σ̃Rr,j(g)
exp(αHr θ

H
k )∑

h∈Nj(g) exp(αHr θ
H
h )

Note that although σMj is a function of the entire network structure g and premiums charged by all HMOs, σHk,j will
just be a function of HMO j’s own hospital network Nj(g).

Hospital and HMO Per-Period Profits For expositional convenience, let σMj and σHk will denote values
for a given network structure g unless otherwise specified. Let tjk be the negotiated per-patient transfers between
hospital k and j in network structure g. For hospital k, profits for a given network structure g are given by the
equation

πHk (g) = (tjk(g)−mcHk )(
∑

j∈Nh(g)

NσMj σ
H
k,j)

mcHk represents the marginal cost of serving each patient at hospital k.

28Note Eω(maxh∈Nj(g)(u
H
i,h)) = ln(

∑
k∈Nj(g) exp(αHr θ

H
k ))
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For any HMO j, its profits are 0 if it has no hospitals (i.e., Nj(g) = {}); otherwise, profits are:

πMj (g) = NσMj (pj −mcMj −
∑

k∈Nj(g)

σHk,jtj,k(g)) if Nj(g) 6= {}

where mcMj represents the marginal cost of insuring a patient for insurer j.

Timing The timing in each period, given a network structure g, is as follows:

1. Each HMO j chooses a premium pj(g) ∈ R+ that it will charge each consumer that chooses to join its plan.
We assume premiums are set to be 15% above the average costs of serving a patient.

2. Each individual i chooses to enroll in an HMO plan, with the utility from choosing HMO j being uMi,j defined
in (22), or chooses to utilize the outside option, thereby deriving a utility of 0.

3. γ proportion of the population becomes sick. Each individual i that is sick chooses the best hospital on the
HMO they enrolled in to attend according to their utility given by (21).

4. HMO payoffs (πM (g)) and hospital payoffs (πH(g)) are realized.

A.2 Parameters

Units, unless otherwise specified, are in thousands.

Demographic Characteristics People are hospitalized with probability γ = .075. Market size is distributed
normally with a mean of 500, standard deviation 300, and a minimum value of 100; thus, if everyone in the mean
market subscribes to an HMO plan, 37.5 patients will need to be served. In the current specification, we do not
assume there are different demographic groups, and assume αMr = αHr = αP = 1 for all agents.

HMO & Hospital Characteristics HMO per-patient costs cMj are normally distributed with mean .75
and standard deviation .25. HMO quality θMj is distributed normally with mean 0 and standard deviation .25. It is
correlated with costs by a value of ρM = .5. Hospital quality θHh for each hospital are normals with mean µθH = 50
and standard deviation σθH = .5. Hospital constant marginal costs c̄Hj are normally distributed with mean µc̄H = 11
and standard deviation µc̄H = 3, with a minimum of 2. Costs and hospital quality index for a particular hospital
h are correlated by a value of ρH = .5. For each pair, these variables are generated first by creating two correlated
standard normal random variables, and then appropriately transforming them with the correct mean and standard
deviation.

Parameters of the Dynamic Game We assume proposer shocks εi are distributed iid Type I extreme
value with variance 20π2/6, no profit shocks η (i.e., ηi,j = 0), a common discount factor β = .9, and costs for forming
a new link to be 100, with no costs for breaking a link.
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