Political Leadership and Representation in West European Democracies: A Test of Three Models of Voting*

Torben Iversen, Wissenschaftszentrum Berlin für Sozialforschung

Recently the spatial theory of elections has been challenged by critics who dispute the realism of its assumptions and the empirical veracity of its predictions. This paper critically evaluates two theoretical alternatives to the spatial model and subjects these to a series of strategic tests using data from six West European party systems. It is argued that a model of representational policy leadership, which combines insights from the spatial and the "directional" theories of voting, best accounts for the observed patterns of voting. Thus, voters prefer parties that offer clear and intense political alternatives, but they turn away from parties that deviate too radically from voters' own stated policy positions. In terms of party strategies, it is demonstrated that spatial theorems, contrary to claims made for the directional theory, hold for all three models of voting. The policy leadership model, however, does explain why parties in multiparty systems tend to be more dispersed than predicted in spatial theory.

Introduction

The spatial theory of elections has framed our understanding of voting behavior and party competition for over three decades, and spatial modeling continues to be a growth industry in political science (Enelow and Hinich 1990). One key to the success of the spatial paradigm is the intuitive appeal and simplicity of its basic assumptions and theorems. Stripped to its essentials, the theory assumes that voters prefer candidates who best represent their policy positions and that candidates seek to maximize votes (Downs 1957; Enelow and Hinich 1984). These assumptions are clearly consonant with rational choice premises for human action and have proved highly amenable to the development of nontrivial axiomatic models of voting and party competition.

Yet despite continued theoretical advances in the field of spatial modeling, critics maintain that the theory is based on unrealistic assumptions about human cognition and motivation and that it fails to account for

*I wish to thank John Aldrich, Michael Alvarez, Robert Bates, William Bernhard, Michael Lewis-Beck, Brian Loynd, Phil Paolino, George Rabinowitz, Phillips Shively, David Soskice, and two anonymous reviewers for many helpful comments and suggestions on earlier versions of this paper. I am particularly grateful to Herbert Kitschelt for providing continuous encouragement and insights in developing the argument for this paper.

© 1994 by the University of Texas Press, P.O. Box 7819, Austin, TX 78713-7819
important empirical patterns of voting and party behavior. Experimental studies by Kahneman and Tversky (1979) and by Quattrone and Tversky (1988) suggest that people systematically violate assumptions of rationality with consequences for electoral choices. A more fundamental challenge to the spatial theory is expressed in various models of “symbolic politics” (Edelman 1967; Sears, Hensler, and Speer 1979; Marcus 1988; Rabinowitz and Macdonald 1989). The core idea in this approach is that people respond to political symbols in an affective or emotional manner that eschews rational appraisal of information about candidates and their policy positions. But despite the clear reference points for the theory of symbolic politics in political praxis, it is only recently that the approach has gained a level of theoretical focus and formalization that invites systematic comparisons with the spatial theory.

The main empirical anomaly attributed to spatial theory is that political parties or candidates tend to adopt more extreme policy positions than those prevalent in their own electorates. Studies by Rabinowitz (1978), Rabinowitz and Macdonald (1989), Rabinowitz, Macdonald, and Listhaug (1991), Dalton (1985), Inglehart (1984), and Holmberg (1989) all find such patterns of elite-voter attitude disparities. Listhaug, Macdonald, and Rabinowitz (1990) and Rabinowitz, Macdonald, and Listhaug (1991) even argue for the existence of an “empty center” where parties cluster in a region that is outside the position of most voters. It must be remembered, however, that most of these findings are for European multiparty systems and that recent advances in the application of the spatial theory to such systems predict policy divergence as a common outcome (see especially Cox 1987, 1990; Shepsle and Cohen 1990). Moreover, in the only true two-party system, the United States—where the Downian convergence thesis is supposed to hold by most spatial accounts—Enelow and Hinich (1989) challenge the empirical veracity of the “empty center” thesis.

What nevertheless remains unaccounted for in spatial theory is the systematic tendency for parties in multiparty systems to be more extreme than their own electorates. Since voters in the spatial model will prefer the most proximate parties this is clearly at variance with the theoretical prediction. Consequently, either parties must be driven by a logic that does not have vote maximizing as its rationale, or voters prefer parties that are more intense than their own stated policy position.

This paper argues that the reasons for the observed pattern of elite voter attitude disparities are to be found in the structure of voters’ preferences. Thus, voters tend to prefer politicians who offer clear and intense policy alternatives over politicians who simply mirror their attitudes. Theoretically, the paper draws on both the formalized theory of symbolic politics developed by Rabinowitz and Macdonald (“directional theory”) and on recent formulations of the traditional spatial model. Based on the
idea that voters are seeking both issue leadership and policy representation, a formal model of represen
tational policy leadership is presented. Unlike the spatial theory, this model can account for noncentrist voting patterns, but unlike the theory of symbolic politics, it avoids any refer
cences to theoretically unattractive concepts such as the "region of ac
cceptability." Empirically, the model is tested on data on voting and party strategies from six European party systems. These tests provide strong evidence in support of the policy leadership model.

In the course of this discussion, I shall show that all spatial theorems about equilibrium party strategies also hold for the policy leadership model and for the directional model. While the three models differ in their conceptualization of voter preference functions and in their predi
cctions about voting behavior, the spatial analysis of party compe
tition remains generally applicable. This conclusion contradicts claims made about the novelty of the directional theory for the analysis of party strategies.

A Critique of the Directional Theory of Voting

Because my theoretical qualifications to the spatial theory rely heavily on the work of Rabinowitz and Macdonald (1989), I begin the analysis by briefly reviewing their directional model of voting and by clarifying the elements in this theory to which I take exception. In particu
lar, I shall argue that while the theory provides an extremely important corrective to spatial theory, it cannot dispense with spatial concepts.

In spatial theory, it is assumed that political issues can be repre
sented as sets of distinct policy positions. Hence, when people respond to issue questions in surveys, they are expected to reveal their policy positions on these issues. In directional theory, on the other hand, issues represent symbols, and people's responses to an issue question are presumed to reveal whether they have positive or negative feelings toward the symbol (the direction of the response), as well as how intensively they feel about the symbol (indicated by how close they are to the extremes of the issue scale). Correspondingly, voters in the directional model prefer candidates who are on the same side of the issue as they are and who express intense positions on the issue. The magnitude of the symbolic or directional effect on voters is thus determined by an interaction of voter and candidate issue stands. In a multidimensional space, this effect can be measured as the scalar product between the voter and candidate positions relative to a neutral center.

The important contribution of directional theory is that it systemati
cally incorporates the role of political symbols and "emotions" into a parsimonious and coherent model of electoral politics. In doing so, it moves beyond the somewhat sterile spatial image of politics in which
politicians are little more than "carriers" of voter attitudes. Even casual observation of political debates and campaigns supports the notion that politics involves the use of symbols that sometimes spark intense emotional responses.¹

Although emotional responses to political symbols do not exclude more rational-cognitive sources of voting, Rabinowitz and Macdonald (1989) deny any role for spatial concepts in their theory. Their notion of a region of acceptability, however, contradicts this contention. This concept is introduced because Rabinowitz and Macdonald (1989) need a mechanism that constrains the degree of acceptable candidate intensity. Thus, they stipulate that "any candidate who lies outside this region loses support by virtue of extremism" (108). Vote-maximizing parties and candidates must therefore locate in close proximity to the boundary of the region (see Rabinowitz, Macdonald, and Listhaug 1991). But while the concept has a very important theoretical function and defines optimal party strategies, the idea is underdeveloped, ad hoc, and has some very implausible empirical implications.

To see this, first note that a distinctive feature of the region of acceptability is that it is independent of voter positions: all voters agree on its location regardless of their own position. Taken ad absurdum, this idea implies that voters located beyond the region of acceptability will penalize parties that transgress the boundary to move closer to these voters. The reason for such penalties cannot be that the parties are becoming less intense (the opposite is in fact the case), so we must conclude that extreme voters take exception to having their own (extreme) views represented by political parties. Since this is clearly not a reasonable implication, we must require that a region of acceptability is shared only by those voters who are located inside the boundary of that region.

Subject to this constraint, if there is only one region, it must encompass all voters, and the radius of this region must be equal to or greater than the distance between the most extreme voter and the neutral center. Yet clearly, this would not constitute much of a constraint on permissible party strategies and would certainly not conform to the "moderate noncentrist" outcome that Rabinowitz and Macdonald hypothesize.² Hence, there must be more than one region.

¹For example, in a study of how evaluations of economic performance affect voting in West European countries, Lewis-Beck (1988) finds that "feelings of anger over government economic policies translate into significant reductions in incumbent party support in each country studied" (65).

²In addition, it would not be in agreement with the empirical evidence presented in Rabinowitz, Macdonald, and Listhaug (1991), in which many voters are located outside the region of acceptability (see, e.g., Figure 7, p. 161).
However, if we allow for a few coexisting regions whose boundaries depend on the relative extremity of different groups of voters, then the problem arises that a voter who is located just to the moderate side of a boundary will have no tolerance for issue extremity, whereas another voter located next to the first, but on the other side of the boundary, will be very tolerant (since the latter "belongs" to a segment of voters with a boundary that has a larger radius). This solution is unsatisfactory, since there is no theoretical justification for assuming such radical differences in perception between otherwise identical voters.

The most promising (re)conceptualization is therefore that every voter is attributed a "private" region of acceptability with an associated penalty function. This possibility avoids the problem of having only one or a few regions, and it makes intuitive sense. In this case, however, voters are turned away from extreme candidates for the same reason that they are turned away in the spatial model: because candidates take issue stands that are deemed too distant from the voters' own issue positions. Hence, it is evident that the idea of private regions of acceptability is indistinguishable from the spatial thesis that candidate distance subtracts from a voter's utility.

The conclusion of this discussion is that, when trying to remedy the theoretical problems inherent in the concept of a region of acceptability, one is eventually transported into a spatial universe. Consequently, because a region of acceptability is indispensable to directional theory, it appears, surprisingly perhaps, that spatial distance is also indispensable to the theory. This raises the possibility that the spatial and directional theories may not be incompatible but instead may complement one another in explaining patterns of voting behavior. The remainder of this paper seeks to present and test such a synthesizing model. First, I briefly outline the formal properties of the spatial and directional models of voting and then propose a voter utility function that incorporates both spatial and directional effects. Based on this analysis, I discuss the implications of the three models for party strategies and individual voting and then relate the predictions to evidence from six European party systems.

Three Models of Voting

The following discussion assumes that voters' preferences over parties depend only on the policy or issue stances of these parties. In addition, it is taken for granted that both voter and party issue positions

3While other factors such as class background and candidate personalities enter into the determination of voters' choices, these are arguably not important for explaining party strategy (since they cannot be easily manipulated).
can be represented as single points in a multidimensional issue space.\footnote{This assumption is necessary to link party strategy to voting behavior.} Finally, it is assumed that all voters vote sincerely.

The relative position of parties and voters in a multidimensional space can be represented by vectors, and the distance between voters and parties, by the length of these vectors. According to spatial theory, a voter’s utility for a party depends on the distance between the issue position of the party and the position of the voter. In particular I shall make the straightforward assumption that the relation between distance and utility is linear. Hence, if A_i is the position of voter A on issue i, and X_i is the position of party X on issue i, then the utility of voter A for party X is:

$$ U_{AX} = -|\text{vector } AX| = -\left(\sum_i (A_i - X_i)^2\right)^{1/2}. $$ (1)

In the directional model, a voter is not concerned with the proximity of different alternatives but prefers parties that take intense positions on the side of an issue favored by the voter. Thus, in the directional model, a particular issue “position” represents the direction and intensity of a policy concern, not a spatial location. The implication is that a relatively “extreme” party position attracts voters who favor the same side of an issue, in particular those who feel strongly about the issue. Conversely, voters are repelled by parties that take policy positions in the opposite direction of the voter. The issue stimulation generated by any combination of voter and party positions can be measured as the scalar product of voter and party positions relative to the neutral point of an issue (Rabinowitz and Macdonald 1989, 100). Voter A's utility for a party X on issue i can therefore be represented by the following expression:

$$ U_{AX} = \text{scalar } AX = \sum_i A_i \times X_i. $$ (2)

The problem with this utility function is that it has no well-defined maximum: voter utility will always be greater for a more extreme party. A fundamental problem in the directional model, the question has not been satisfactorily dealt with by Rabinowitz and Macdonald (1989) as argued above. On the other hand, if we assume that voters are motivated by both “passion” and “reason,” then the idea of private regions of acceptability can be represented by a model that blends spatial and directional effects in a particular functional form. Specifically, in this model,
directional effects dominate spatial effects over relatively short distances (when intensity generates positive emotional responses and representation is not in dispute), whereas spatial effects dominate directional effects after a threshold distance (beyond which issue positions are being perceived as extreme). Since it is not possible to determine a priori where this threshold will be (at least not at the present stage of theoretical development), the voter utility function must be defined in a way that leaves this open for empirical estimation.

A utility function with the desired properties can be constructed as a linear combination of the scalar product and the squared distance between voter and party positions (as opposed to Euclidean distance). In particular, if s is a measure of voter A's sensitivity to directional stimulus, and $(1 - s)$ is a measure of the voter’s sensitivity to spatial distance, then the utility for party X is:

$$U_{AX} = s \sum_i A_i X_i - (1 - s) \sum_i (A_i - X_i)^2, \text{ where } 0 < s < 1. \quad (3)$$

According to this model, a voter is attracted to parties that offer unambiguous and intense representations of his or her side of an issue (the directional effect), but is turned away from parties that take issue positions well beyond those the voter considers politically reasonable (the spatial effect). Correspondingly, at the level of party strategy formation, a trade-off exists between presenting intense policy positions and maintaining the perception among the party’s constituencies that the party is also representative. Because this model implies that parties simultaneously direct, or lead, public opinion and remain responsive to the spatial distribution of such opinions, I shall refer to it as the representational policy leadership model.\(^5\)

The representational policy leadership model that I develop is mathematically identical to the mixed model presented by Rabinowitz and Macdonald (1989), although the particular form of the model they present is different from the form I propose.\(^6\) Rabinowitz and Macdonald find

\(^5\)For a more thorough discussion of the interrelationship between voter issue positions, issue intensity, and issue leadership, see Iversen (n.d.).

\(^6\)To see this, expand equation (3) and collect the terms:

$$U_{AX} = (2 - s) \Sigma A_i X_i - (1 - s)(\Sigma A_i^2 + \Sigma X_i^2).$$

Since there is no intrinsic utility, we can divide through by $(2 - s)$ to obtain

$$U_{AX} = \Sigma A_i X_i - \frac{(1 - s)}{(2 - s)} (\Sigma A_i^2 + \Sigma X_i^2).$$
little empirical support for a mixed model in their empirical analysis of
candidate evaluation in the United States. In contrast, the empirical re-
results in this paper suggest that both spatial and directional factors are
important for the way people vote, and I argue that the "empty center"
thesis loses much of its relevance in mixed models that incorporate spatial
distance.

Theoretically, what is important is that the voter utility function com-
bines spatial and directional components in a functional form that is con-
sistent with the idea of private regions of acceptability. The bottom line
of the representational policy leadership argument is that voters prefer
politicians that provide issue leadership by advocating political change
in a favored direction while simultaneously refraining from taking issue
positions that are clearly unrepresentative of the voters' own positions.
A linear combination of squared distance and the scalar product is the
simplest mathematical representation of this logic.

In the following section I will briefly discuss the implications of the
three models of voting for party competition and electoral strategies. I
will then turn to the empirical tests.

Implications for the Analysis of Equilibrium Party Strategies

The voter utility functions presented above imply different logics of
voting. However, it can be shown that the analysis of equilibrium party
strategies in all three models follows the same logic—originally de-
veloped within the spatial paradigm—and that any theorem derived in the
spatial model also applies to the other models. This is important because
it shows that there exists a unifying theory of party strategy formation,
and because it highlights the dependence of Rabinowitz and Macdonald's
"empty center" thesis on the theoretically questionable concept of the
region of acceptability.

The first point is most easily demonstrated in the classical case of

The Rabinowitz and Macdonald (1989) mixed model in the present notation (115) is

$$U_{AX} = 2k_{sp} \sum A_i X_i - k_{ten} (\sum A_i^2 + \sum X_i^2).$$

Again, since there is no intrinsic unit of utility, we can divide through by k_{sp} to obtain

$$U_{AX} = \sum A_i X_i - \frac{k_{ten}}{2k_{sp}} (\sum A_i^2 + \sum X_i^2).$$

Hence, $(k_{ten}/2k_{sp}) = (1 - s)/(2 - s)$, and the two models are identical. I am indebted to
George Rabinowitz for demonstrating this to me.

The development of this point has been greatly facilitated by discussions with David
Soskice.
a two-party system with vote maximization. Beginning with the policy leadership model, note that the voter utility function (equation 3) is single-peaked and strictly quasi-concave as is commonly assumed in spatial voting models. The utility function is not always symmetrical around the peak value, nor is this a necessary condition for the applicability of the spatial results to party competition (Enelow and Hinich 1984, 12). The only salient way in which the policy leadership utility function differs from the spatial utility function is by having a different peak or ideal point. This is easily seen by differentiating equation (3) with respect to A_i and setting the result equal to zero. This yields:

$$A_i^* = \left(1 - \frac{1}{2}s \right) X_i.$$ \hspace{1cm} (4)

This equation shows that the voter for whom party X is the most preferred alternative is displaced from the position of this party by a factor that depends on the size of s. In contrast, the spatial model (where $s = 0$) implies that the voter and the preferred party are located at identical positions (i.e., $A_i^* = X_i$). In other words, if voter ideal points in the policy leadership model are denoted A_{pl}^* and ideal points in the spatial model are denoted A_s^* then voter ideal points in the policy leadership model can simply be expressed as a linear transformation of voter ideal points in the spatial model:

$$A_{pl}^* = \left(1 - \frac{1}{2}s \right) A_s^*.$$ \hspace{1cm} (5)

For the purpose of analyzing electoral strategies in the two-party case, this is all we need to know. Because the shape of the distribution of voter ideal points is inconsequential for the median-voter result, and because utility functions may be shaped in any fashion as long as they are single-peaked and quasi-concave, Downs's (1957) analysis of vote-maximizing electoral competition extends directly to party strategies in the policy leadership model. Thus, Downs's spatial analysis is simply applied to the set of voter ideal points as defined in equation (5) rather than to the set of revealed policy positions (which are ideal points in the spatial model). Because the ranking of voters' issue positions is the same in the policy leadership model as in the spatial model, the median voter will also be the same individual in the two models. This result follows trivially from equation (5), since any linear transformation of ideal points will leave the rank-order of these points unchanged.

The median voter result for two-party systems thus applies to both the spatial and to the policy leadership model; that is, it holds for all
$s \in [0, 1]$. What is perhaps less obvious is that it also holds for the directional model (i.e., when $s = 1$) provided that there is some exogenously given constraint on issue extremity (such as a "region of acceptability"). Yet as long as voters’ preference functions are single-peaked—which will be the case if voters’ prefer parties located on the boundary of the (common) region of acceptability—party strategies should comply with the spatial median voter theorem.

More specifically, if the number of voters is uneven and the distribution is nonsymmetrical, then the optimal location for any party would be at the boundary of the region of acceptability where the median voter is located. If the distribution of ideal points is symmetrical around the neutral point and at least one median voter is located at the neutral point, then the dominant strategy is to adopt the position of the neutral median voter. If the distribution of ideal points is symmetrical and there is an even number of voters (and therefore no median voter), then Downs’s analysis implies that a party can position itself anywhere between the two voters closest to the center (who will both have ideal points on the region of acceptance). All this follows in a straightforward manner from a spatial analysis of ideal points. Hence, in the case of two-party systems, directional theory adds nothing new to the analysis of party strategies.

This conclusion can be extended to multiparty systems. In particular, Cox’s (1987, 1990) analysis of multiparty systems, which is the most comprehensive spatial account to date, is based on the same set of assumptions about voters as the Downsonian model. As long as voter utility functions are single-peaked, they may take any conceivable form (Cox 1987, 87; 1990, 908). In fact, Cox’s model makes no allusions to Euclidean distance per se but alludes only to the distribution of ideal points. Each of Cox’s theorems therefore applies to all three models of voting, so long as it is kept in mind that these theorems are defined relative to the distribution of ideal points and not relative to the distribution of revealed policy positions.

If voter ideal points are distributed across the entire policy space,

8The ideal point in equation (5) is not defined for $s = 1$. Only by defining some exogenous limit on extremity will voters have definite party preferences.

9Rabinowitz and Macdonald (1989) explicitly deny this. Thus, they write that “in contrast [to directional theory], traditional spatial theory would place the candidate at the mean voter location, generally a more moderate position than that suggested by directional theory” (110).

10Hence, two candidates in the directional model can be located near the neutral center. But this result follows only when the position of the median voter is exactly equal to the neutral point. Even a slight deviation from this position will radically change the optimal party strategy. This is another implausible implication of the directional model.

11Formally, for all $t \in [-1, 1]$, $f(t) > 0$.
then Cox's theorems for multiparty systems imply a certain amount of
dispersion in parties' policy positions (see also Shepsle and Cohen 1990).
More specifically, under ordinary plurality and PR systems, the degree of
spread will increase with the number of parties (Cox 1990). The principal
incentive for dispersion is that parties thereby avoid being "squeezed"
by other parties. Because parties will be spread across the entire political
spectrum, parties will not be drawn to the median voter as in the two-
party system, nor will there be any "empty center" as implied in the
directional model. This conclusion also holds true for the policy leader-
ship model, since voter ideal points in this model are simply a linear
transformation of voter ideal points in the spatial model (see equa-
tion 5). Only in the directional model where all voter ideal points are
concentrated in two points (in the one-dimensional case) will there be an
empty center. Thus, for example, in a two-party system where the median
voter is close to the neutral center (though not at the center), the policy
leadership model predicts that the parties "crowd" the center, while the
directional model predicts that they "flee" the center (thereby leaving it empty).

It is beyond the scope and aims of this paper to test the spatial
equilibrium results for electoral competition. The important point is that
they apply to all three models. Instead, we can test to see which model
of voters' utility functions provides the most accurate description of ac-
tual voting behavior (and, by implication, of elite voter attitude dispari-
ties). In the remainder of this paper, the results of two such tests will be
presented. The first test is based on aggregate-level data on the positions
of parties and the mean voters in these parties' electorates. The second
test compares the explanatory power of the three models when applied
to individual-level data about voting behavior.

The Data

The empirical analysis covers six West European democracies: Bel-
gium, Britain, Denmark, France, West Germany, and the Netherlands.
Data for party issue positions are obtained from the European Political
Party Middle Level Elite (EPPMLE) study of delegates to the European
party conferences in 1979. It is supplemented at the mass level by

12 It is therefore also incorrect when Rabinowitz, Macdonald, and Listhaug (1991)
contend that the spatial model applied to multiparty systems implies "a 'black hole' where
all the parties are drawn to the center" (155).
13 The policy leadership model is therefore not vulnerable to the Enelow and Hinich
(1989) finding that there is no empty center in U.S. electoral politics.
14 To my knowledge, no comparable data set exists that measures actual issue positions
of party officials. This data thus provides a unique opportunity to test different models of
electoral politics.
Eurobarometer data that was collected simultaneously in the then nine European Community member countries (Eurobarometer 11 or EB-11). Both surveys were sponsored by the European Communities.

The two surveys contain data for party elites and rank-and-file voters on four items that are identical, or nearly identical, in the two surveys: income equality, government control of multinational corporations, nuclear energy, and penalties for terrorism (see Appendix A for question wording). These four issues thus allow a direct comparison of the attitudes of elites and voters. In addition, the two data sets include a number of issues that are similar but not identical. To determine the relationship between the four identical issues with the rest of the issues, a factor analysis of both the elite and the mass data was done. The results of this analysis, shown in Appendix B, yielded two dimensions. Variables that load highly on the first factor are traditional left-right issues about equality and the role of the state in the economy, while variables that load highly on the second factor represent issues that are associated with a "New Politics" dimension in European politics.

Focusing on the four identical issues, the questions about equality and multinationals have high loadings on the first factor in both samples, whereas the questions about nuclear energy and terrorism have high loadings on the second factor in both surveys. Except for the nuclear energy question at the elite level, the four items also have higher factor loadings than any other item has. This confirms the impression that these issues were highly salient in European politics at the time of the surveys (1979), and the results are reassuring in terms of the meaningfulness of using these particular issues in an analysis of policy positions.

Reflecting the results of the factor analysis, the four issue items were combined into two simple additive indices representing an economic and a noneconomic dimension. Assuming that party positions can be represented as single points in the resulting policy space, and defining these points as the mean location of top party officials, the spatial distribution of parties in the six countries is as shown in Figure 1.

15Respondents who either had no opinion or did not know what to answer were excluded from the analysis. This means that 26.6% were missing from the EPPMLE survey and 28.0% from the EB-11 survey. Because the percentages are so similar, the alternative procedure of coding these respondents as taking a neutral position would have little effect on the results.

16This two-dimensional result conforms to findings by others such as Inglehart (1984) and Kitschelt (1989). The former study is based on the same EB-11 data as used here, and Inglehart provides a similar interpretation of the results.

17Top party officials are operationalized as members holding regional or national offices. Within this elite segment there are no systematic differences in the attitudes of those holding party and elected offices, or between those holding national and regional offices. This justifies that they are grouped together.
Figure 1. The Distribution of Parties on Two Policy Dimensions

Figure 1 makes it evident that, at the level of parties, the two policy dimensions are highly correlated ($r = .78$). Consequently, the policy alternatives presented to voters tend to be "compressed" into a super-dimension or a main axis of electoral competition (Kitschelt n.d., chap. 4). As Enelow and Hinich (1984) have argued, this may also partly reflect that voters tend to evaluate parties on a single underlying ideological dimension. On this background, and for purposes of presentational economy, the four issues have been combined into a single additive left-right index. The index has been normalized to produce a left-right scale in the interval $[-1, 1]$. The index is used in the first test below, whereas in the second test, the four issues are treated separately.

Test 1: Relative Spatial Positions of Parties and Party Voters

Assuming that parties are vote maximizers, the three models predict different patterns of relative party-voter policy locations as suggested in Figure 2. In the pure spatial model, parties will be spread over the policy space (assuming a multiparty system) and will mirror the central tendency of attitudes in their electorates.\(^{18}\) In the pure directional model, all parties should locate at the boundary of some exogenously given region (leaving

\(^{18}\) A party’s electorate here means simply those voting for the party.
the center empty). Finally, the policy leadership model predicts a pattern where the location of parties is related to, but more extreme than, the revealed position of the mean voter in the parties' electorates. In particular, if X_i^* is the vote-maximizing location for party X, and if M_i is the mean voter in party X's electorate then:

$$X_i^* = \left(\frac{1 - \frac{1}{2}s}{1 - s} \right) M_i \quad \text{(similar to equation 4).} \quad (6)$$

Thus, the party should adopt a position that is more intense than the revealed policy location of the mean party voter by a factor given by the constant in equation (6).

In Figure 3, all political parties in our sample have been plotted...
Figure 3. The Left-Right Position of Mean Party Voters and Party Elites

Position of Party

Position of Mean Party Voter

Key:

………… Mirror line

——— Regression line

Note: See Appendix C for the full names of parties.

according to the mean position of the party elite and the mean position of the party electorate. The emerging pattern is precisely that expected from the representational policy leadership model. Thus, compared to the 45-degree "mirror line"—which indicates a perfect match in opinions—parties to the right of the center tend to be more to the right than is the mean voter in their electorates (e.g., the Danish and British conservative parties), while left parties are systematically farther to the left than the mean voter in their electorates is (e.g., the Dutch and Belgian socialist parties). Center parties, on the other hand, are generally much closer than extreme parties are to the mean voter in their electorates. For example, the center-oriented Dutch CDA, the Belgian CVP/PSC and PRL/PVV, and the British Liberals all attract voters who are also largely centrist in political orientation.19

19This pattern conforms to findings in several other studies. See especially Dalton (1985), Inglehart (1984), and Holmberg (1989).
It is possible to find a simple expression of the degree of congruence in attitudes between party elites and party voters by regressing the mean voter attitudes against the mean party positions. Thus, if \(X^*_i \) is the estimated position of party \(X \) on dimension \(i \), and \(M^*_i \) is the estimated position of any mean voter on the same dimension, then the fitted regression line is:

\[
X^*_i = 0.02 + 1.9M^*_i \quad (\text{Adj. } R^2 = .71).
\]

(7)

As expected, \(X^*_i \) is close to zero when \(M^*_i \) equals zero, while the estimated party position is almost twice the position of the mean voter when \(M^*_i \) is different from zero. In a one-tailed test, the beta coefficient is significantly different from one (the "mirror" line) at a .001 level. Note in particular that, while parties do not emulate the opinions of their electorates, the high \(R \)-squared suggests that political parties are nevertheless constrained by the distribution of voter sentiments. This finding is unambiguously supportive of the representational policy leadership model that rejects the spatial conception of political elites as simply mirrors of their electorates, but nevertheless confirms the principle that successful parties must be responsive to attitudes in their electorates.

It is readily seen that the regression coefficient in equation (7) is the estimated value for the constant in equations (4) and (6). Hence, if voters are utility maximizers and parties are vote maximizers, then the spatial distribution of party elites and voters implies that voters prefer parties that are nearly twice as intense as their own stated policy position.\(^{20}\) This suggests a strong and theoretically significant role for policy leadership in European politics. However, compared to the (median) value for \(s \) estimated by Rabinowitz and Macdonald (1989), this result is rather modest. Thus, according to their findings, the optimal candidate location is more than eight times as extreme as the mean voter in the candidate’s electorate.\(^{21}\) Interpreted in terms of the directional model, the region of acceptability would therefore be eight times farther toward the political extremes than the position of the mean voter on either side of the neutral center. This result plainly does not appear reasonable, and it is not compatible with the findings in Rabinowitz, Macdonald, and Listhaug (1991).

\(^{20}\) This is equivalent to an \(s \)-value of 0.60 (by setting the constant in equation 6 equal to 1.9). More precisely, using a 95% confidence interval, \(s = 0.60 \pm 0.14 \).

\(^{21}\) Rabinowitz and Macdonald (1989, 105) provide this result in terms of their "mixed model," and find that \(k_{in} / k_{sp} = 8.6 \). Using the equality reported in footnote 5 above we can determine \(s \) to be .94, and from equation (6) we can find the optimal party strategy to be 8.6 times more extreme than the mean voter in the party’s electorate (and equal to \(k_{in} / k_{sp} \); see Rabinowitz and Macdonald 1989, 117, Theorem 3).
in which the (hypothetical) boundary of the region of acceptability is much closer to the center.22

It should be reiterated that the estimated size of \(s \) assumes that parties are vote maximizers and that voters are utility maximizers in the sense stipulated by the policy leadership model. Neither assumption may be realistic. In particular, because the results presented in this section are based on aggregate data, we cannot be sure that the observed pattern is induced by individual voting behavior. The next test is therefore designed to examine this question more directly.

Test 2: Individual Voting Behavior of European Electorates

Equations (1) through (3) represent absolute voter utilities for a party, \(X \), under different model assumptions about the psychology of voting. If voting is issue dependent, the utilities defined by these models should be associated with different patterns of voting. However, since the net attraction of one party depends on the spatial position of all other parties, it is necessary to design the test in a manner that allows comparisons of relative utilities. Now, let \(U_{AY} \) be the utility of voter \(A \) for any party \(Y \) that is not \(X \):

\[
U_{AY} = s \sum_i A_i Y_i - (1 - s) \sum_i (A_i - Y_i)^2.
\] \hfill (8)

By subtracting equation (8) from equation (3), we can find the relative or net utility of party \(X \) for voter \(A \) and thus the spatial domain in which party \(X \) is preferred to another party \(Y \):

\[
NU_{AX} = s \sum_i A_i (X_i - Y_i) \\
+ (1 - s) \sum_i [Y_i^2 - X_i^2 + 2A_i(X_i - Y_i)].
\] \hfill (9)

The first term in equation (9) is the net utility derived from the relative directional stimulus provided by party \(X \), while the second term is the net utility derived from the relative spatial stimulus provided by party \(X \). Depending on the model of voting, one may conceive of voters who compare the distance and/or intensity associated with each party and who then choose the alternative that offers the highest utility. Thus, if the directional model is correct (i.e., \(s = 1 \)), the second term in equation (9) drops out, and only intensity should matter for voting. In contrast, if

22 No estimates are provided, but consult, for example, Figure 8, p. 161 (or any of the other spatial "maps").
the spatial model is correct (i.e., $s = 0$), the first term drops out, and only distance should affect voting. Finally, if the policy leadership model is correct, the propensity to vote for a party should maximize whenever that party is both the most intense and the most proximate (i.e., when both terms in equation 9 are positive).

Utility comparisons between different parties may be either cardinal (based on absolute differences in distance/intensity) or ordinal (based on a ranking of parties according to distance and intensity). For several reasons, the empirical analysis is based on ordinal utility rankings rather than on cardinal utility. First, although equation (3) provides one acceptable representation of the policy leadership model, the model does not have a unique functional form (e.g., the rise in disutility from distance could be steeper). Since ordinal rankings of parties on their theoretical attributes are insensitive to the exact utility function used to represent the policy leadership model, they are preferable to cardinal comparisons in testing the models. Second, as a more practical matter, operationalizing the theoretical variables in their cardinal form (i.e., as the scalar product and the squared distance) sometimes creates problems of collinearity between two or more independent variables—especially in the party systems with four or more parties. Since such collinearity increases the standard error on the parameter estimates, the ordinal formulation is also preferable for this reason. Finally, since voters require less information to be able to rank parties according to their distance and intensity than to assess their exact relative position, ordinal comparisons may be more realistic representations of voting choices.

For these reasons, the following test is based on simple binary rankings of the distance and the intensity of different parties in each party system. First, the squared vector lengths (distance) and the scalar products (intensity) in the four-dimensional issue space were calculated for all voters and all parties in each country. Then two dummy variables—one measuring intensity, the other measuring proximity—were created for each party j in the choice set:

\begin{align*}
\text{Intensity} &= 1 \quad \text{if party } j \text{ is more intense than other parties,} \\
\text{Intensity} &= 0 \quad \text{otherwise,}
\end{align*}

and

\begin{align*}
\text{Proximity} &= 1 \quad \text{if party } j \text{ is more proximate than other parties,} \\
\text{Proximity} &= 0 \quad \text{otherwise.}
\end{align*}

23The French case had to be omitted from this analysis because the EPPMIE survey did not obtain data for either the large Communist party or the Independent Republican party. This makes meaningful spatial comparisons impossible.
Based on these variables, two complementary statistical models were applied to the data to test the three theories. The first is a multinominal logit model where the different party alternatives form the choice categories on the dependent variable and where the scores on the independent variables are treated as attributes of these choices. The second is a binary logit model where the vote or nonvote for each political party is a separate dependent variable. Whereas the multinominal model provides a parsimonious estimation of the effects of the theoretical variables for entire party systems, the binary logit model offers comparable parameter estimates for individual parties.

The (conditional) multinominal logit model has the following form (Maddala 1983, 42):

\[
P_{ij} = \frac{\exp(\beta_0 + \beta_1 INTENSITY_{ij} + \beta_2 PROXIMITY_{ij})}{\sum_{k=1}^{m} \exp(\beta_0 + \beta_1 INTENSITY_{ik} + \beta_2 PROXIMITY_{ik})},
\]

where \(P_{ij} \) is the probability that voter \(i \) will vote for party \(j \), and \(m \) is the number of parties in the choice set. The maximum-likelihood parameter estimates are computed using the Newton-Raphson maximization method, and analogously to equation (9) the resulting beta coefficients can be interpreted as coefficients of a random utility function (King 1989, 113–14):

\[
U_{ij} = \beta_0 + \beta_1 INTENSITY_{ij} + \beta_2 PROXIMITY_{ij} + \epsilon,
\]

where \(\epsilon \) is a random variable.

Similarly, the binary logit model is defined as:

\[
P_{ij} = \frac{\exp(\beta_0 + \beta_1 INTENSITY_{ij} + \beta_2 PROXIMITY_{ij})}{1 + \exp(\beta_0 + \beta_1 INTENSITY_{ij} + \beta_2 PROXIMITY_{ij})},
\]

where party \(j \) is any party in the choice set (Maddala 1983, 25). The only difference between equation (11) and equation (12) is that the former produces one set of parameter estimates for all parties in the choice set, while the latter creates a separate set of parameters for each individual party.

Before applying these models to the data it is necessary to introduce some constraints on the analysis that are due to common assumptions that underpin all three approaches to voting. Keeping these assumptions

24In fact, one is a special case of the other.

25McFadden (1974) called this a “conditional logit model.”
(or conditions) in mind will also prove helpful in interpreting the results. The assumptions are:

1. People's votes must be determined by party issue positions rather than by social-psychological factors;
2. Parties must be part of the feasible set for all voters;
3. Parties must compete on the issue dimensions for which data exist; and
4. Parties must diversify their electoral appeal on these issues.

The satisfaction of the first assumption is always a matter of degree. Thus, the votes of some people may be completely "coded" responses to social-psychological circumstances, while others may determine their vote exclusively on the basis of issues. The smaller the number of voters who make their vote contingent on parties' issue positions, the weaker the effects of variables defined over issue positions.

The second assumption is especially problematic for parties that are perceived to be incapable of passing the threshold of electoral representation. Since a primary purpose of voting is to elect representatives to parliament, such parties may not be perceived as part of the choice set. Consequently, no party that did not obtain representation in the parliament in the first election following 1979 (the year of the surveys) was included in this analysis.

The Liberal party in Britain poses a particular problem in relation to the second assumption due to the plurality electoral system in this country. Because the Liberal candidates in many electoral districts are not competitive, a vote for the Liberals in these districts is wasted. Hence, voters who are sympathetic to the issue positions of the Liberal party may not vote for the party. I nevertheless decided to keep the Liberals in the analysis, but care should be taken in interpreting the empirical results for this party.

The third condition is problematic for certain other parties. Although the issues included in this study capture core dimensions defining the electoral space in all five countries at the time (1979), some parties clearly elicited more specialized voter appeals. In particular, the small Belgian regional parties (Volksunie, Rassemblement Wallon, and Front Democratique des Francophones Bruxellois) received most of their electoral support by appealing to ethnic/regional identities, a cleavage dimension that is not tapped by our four issue items. These parties were consequently excluded from the analysis.

The fourth condition must be met for issues to make a difference in people's voting behavior. If parties adopt very similar issue positions, there would be no great incentive to vote for one party rather than
another, and our theoretical variables (based on party issue positions) would not provide much explanatory leverage. Hence, if a party system is characterized by a centripetal pattern of party competition, other factors, such as personality or sheer political inertia, would tend to become more important for understanding the observed patterns of voting.

With these caveats in mind, I turn to an analysis of the results that are presented in Table 1.26 First, note that the beta coefficients for the multinominal model always carry the “correct” sign and that most parameter estimates are significant at a .025 level or better.27 For individual parties, only the British, German, and Belgian liberal parties exhibit a slightly aberrant pattern. Thus, although the directional variable carries the expected sign in the three cases, all exhibit a slightly negative (though insignificant) effect of proximity. Considering the “distorting” effects of plurality electoral systems on the support for small parties (as discussed above), this result is not so surprising in the case of the British Liberals. The negative proximity effects for the Belgian and German liberal parties are more puzzling, and they may be due to factors that are not identified in any of the alternative voting models.28 Yet these “negative” results do not overshadow the overwhelming impression that, to the extent issue voting matters in the different countries, both directional and spatial effects are important for voting behavior, a finding that provides strong support for the representational leadership model.

This conclusion can be given a more intuitive and substantive interpretation in terms of probabilities. Thus, based on the parameter estimates produced by the multinominal logit model, Figure 4 shows the predicted probabilities of voting for a particular party for voters with different values on the independent variables. The pattern is very similar across countries. For example, the probability of voting for a party increases by between 2% (Germany) and 12% (the Netherlands) if the party

26The effects of four control variables—occupation (worker, other), age (years), sex (male, female), and education (age when leaving school)—were tested in all five countries. Since they did not have an appreciable effect on the parameter estimates for the theoretical variables, they were discarded in the final analysis.

27The results for two small parties, the CD and the KrF in Denmark, were all clearly insignificant. Since only 18 and 19 respondents reported to have voted for these parties, not much credence can be attributed to the findings for these parties, and they are not shown in Table 1. Both parties, however, were treated as part of the feasible set in the estimation of the multinominal logit model.

28It would be difficult to interpret these results as support for the directional theory of voting. The liberal parties in both countries take centrist positions that are distant from any conceivable "region of acceptability." It would certainly be odd to accredit the directional model of voting for explaining the support patterns of parties that violate the directional imperative of abandoning the center.
<table>
<thead>
<tr>
<th>Country and Political Party</th>
<th>Estimated Parameters and t-scores</th>
<th>Number of Cases<sup>a</sup></th>
<th>Statistical Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netherlands:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | $NU^b = .59$ INTENSITY + .49 PROXIMITY
$t(5.96^{***})$
$t(5.24^{***})$ | 843 | Multinomial logit^c |
| PvdA | $NU = -1.46 + .83$ INTENSITY + .59 PROXIMITY
$t(4.98^{***})$
$t(3.56^{***})$ | | |
| D66 | $NU = -2.32 + .02$ INTENSITY + .96 PROXIMITY
$t(0.02)$
$t(2.84^{***})$ | | |
| CDA | $NU = -1.17 + .27$ INTENSITY + .40 PROXIMITY
$t(1.52^{*})$
$t(2.54^{***})$ | 1,023 | Binary logit |
| VVD | $NU = -2.40 + 1.06$ INTENSITY + 1.04 PROXIMITY
$t(3.33^{***})$
$t(3.17^{***})$ | | |
| | | | |
| **Denmark:** | | | |
| | $NU = .71$ INTENSITY + .65 PROXIMITY
$t(5.62^{***})$
$t(5.03^{***})$ | 640 | Multinomial logit |
| SF | $NU = -3.42 + .91$ INTENSITY + .26 PROXIMITY
$t(3.33^{***})$
$t(.75)$ | | |
| SD | $NU = -1.04 + .38$ INTENSITY + .48 PROXIMITY
$t(2.61^{***})$
$t(3.32^{***})$ | | |
| V | $NU = -2.05 + .99$ INTENSITY + .29 PROXIMITY
$t(2.73^{***})$
$t(.76)$ | | |
| KF | $NU = -2.53 + .96$ INTENSITY + .59 PROXIMITY
$t(3.43^{***})$
$t(1.31^{*})$ | 1,072 | Binary logit |
| FrP | $NU = -1.43 + .26$ INTENSITY + .82 PROXIMITY
$t(.401)$
$t(2.67^{***})$ | | |
| | | | |
| **Britain:** | | | |
| | $NU = .42$ INTENSITY + .23 PROXIMITY
$t(3.87^{***})$
$t(1.92^{***})$ | 781 | Multinomial logit |
| LAB | $NU = -1.18 + .59$ INTENSITY + .56 PROXIMITY
$t(3.66^{***})$
$t(2.66^{***})$ | | |
<table>
<thead>
<tr>
<th>Party</th>
<th>Equation</th>
<th>Coefficients</th>
<th>t-values</th>
<th>N</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIB</td>
<td>(NU = -2.18 + .18 \text{INTENSITY} - .02 \text{PROXIMITY})</td>
<td>((t = .14))</td>
<td>((t = .11))</td>
<td>1,003</td>
<td>Binary logit</td>
</tr>
<tr>
<td>CON</td>
<td>(NU = -.98 + .54 \text{INTENSITY} + .38 \text{PROXIMITY})</td>
<td>((t = 2.40^{**}))</td>
<td>((t = 1.74^{**}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium:</td>
<td>(NU = .30 \text{INTENSITY} + .13 \text{PROXIMITY})</td>
<td>((t = 1.42^{*}))</td>
<td>((t = .99))</td>
<td>317</td>
<td>Multinominal logit</td>
</tr>
<tr>
<td>PSB/BSP</td>
<td>(NU = -2.10 + .32 \text{INTENSITY} + .10 \text{PROXIMITY})</td>
<td>((t = 1.07))</td>
<td>((t = .42))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLP/PVV</td>
<td>(NU = -2.43 + .90 \text{INTENSITY} - .26 \text{PROXIMITY})</td>
<td>((t = .91))</td>
<td>((t = .27))</td>
<td>713</td>
<td>Binary logit</td>
</tr>
<tr>
<td>PSC/CVP</td>
<td>(NU = -1.20 + .06 \text{INTENSITY} + .16 \text{PROXIMITY})</td>
<td>((t = .16))</td>
<td>((t = .94))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany:</td>
<td>(NU = .35 \text{INTENSITY} + .06 \text{PROXIMITY})</td>
<td>((t = 2.25^{***}))</td>
<td>((t = .55))</td>
<td>782</td>
<td>Multinominal logit</td>
</tr>
<tr>
<td>SDP</td>
<td>(NU = -.91 + .34 \text{INTENSITY} + .11 \text{PROXIMITY})</td>
<td>((t = 2.01^{**}))</td>
<td>((t = .72))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP</td>
<td>(NU = -2.67 + .54 \text{INTENSITY} - .43 \text{PROXIMITY})</td>
<td>((t = .74))</td>
<td>((t = .88))</td>
<td>1,011</td>
<td>Binary logit</td>
</tr>
<tr>
<td>CDU/CSU</td>
<td>(NU = -.50 + .37 \text{INTENSITY} + .13 \text{PROXIMITY})</td>
<td>((t = 2.07^{**}))</td>
<td>((t = .77))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The independent variables are dummies measuring relative distance and intensity. They are defined in the text.

*The multinominal logit analysis excludes individuals who were not voting for one of the parties listed under each country, whereas the binary logit analysis includes all respondents. This explains the difference in \(N\) for whole countries and for individual parties.

\(^a\)NU stands for net utility and refers to equation (9).

\(^b\)The multinominal logit model produces \((n - 1)\) constants, where \(n\) = number of parties. These constants are not shown in the table.

\(^{**}p < .10\), one-tailed test; \(^{***}p < .05\), one-tailed test; \(^{****}p < .025\), one-tailed test.
Figure 4. The Effects of Issue Proximity and Intensity on the Probability of Voting for a Party (in Percentages)

![Graph showing percentage increase in probability of voting for different countries with varying levels of proximity and intensity.]

Key:
- Most proximate
- Most intense
- Both

Note: All probabilities are compared to a situation in which a party is neither the most intense nor the most proximate.

is more proximate (but not more intense) than other parties (the mean value is 7.2%), while the probability of voting for a party increases by between 10% (Belgium) and 15% (the Netherlands) if the party is more intense (but not more proximate) than other parties (the mean value is 12.8%). If a party is both more proximate and more intense, the probability of voting for the party increases by between 14% (Germany) and 32% (the Netherlands). These figures suggest significant *substantive* effects of both spatial and directional stimuli on the voting behavior of European electorates. This corroborates the findings at the aggregate level (reported in the previous section) and reinforces our confidence in the policy leadership model.

Note that the directional effect is somewhat greater than the spatial
effect in all countries and that issue voting seems to be more important in the Netherlands, Britain (excepting the Liberal party), and Denmark than in Belgium and Germany. When we recall the assumptions that underpin all the voting models (enumerated above), this pattern is not surprising. First, it is reasonable to conjecture that social-psychological factors deeply rooted in Belgian history limit the role of issue-based voting, compared to the other countries. To the extent that aggregate electoral volatility measures voter responsiveness to changing issue stimuli, this is reflected in very stable party alignments in Belgium during the 1970s. The same is true for Germany. Thus, in the period 1970–77, Germany and Belgium experienced the lowest levels of aggregate electoral volatility among the five countries (Pedersen 1983, 39). Second, especially in the Belgian case, the issues included in this study clearly do not capture the effect on voting on several divisive issues of regional, cultural, and religious origin. Hence, the issue effect on voting for Belgium reported in this study may underestimate the real effect.

Finally, both Belgium and Germany, but especially the latter, exhibit centripetal patterns of party competition. Thus, all three German parties adopt very similar positions on the four issues, and the net voter utility for each party is consequently low. In turn, the centripetal tendencies in the German party system are almost certainly due to the pivotal role of the Liberal party in government formation since World War II. Since neither of the major parties can form a government without the support of the Liberals, both have strong incentives to adopt policy positions in close proximity to the Liberal party. This contrasts sharply with the British case where the Liberal party was only pivotal for one brief period in post-1945 electoral history (1977–78).

The reasons advanced for the differences in the level of issue voting across our five cases are somewhat speculative. Considering the small sample of countries, it is not possible to provide a more systemic analysis of the reasons for these differences. However, the evidence presented in Table 1 and in Figure 4 clearly supports the hypothesis that both directional and spatial effects shape the way people vote. The test results thus strengthen our confidence in the representational policy leadership model at the same time that they challenge the general validity of the two "pure" models.

Summarizing, the findings in this section provide the microlevel

29 In Europe, only Austria had a lower level of volatility in the 1970s than Germany and Belgium had.
30 None of the voting models take account of party objectives other than vote maximizing.
linkage between parties’ strategic positioning (as analyzed in the previous section) and voting behavior. Because voters prefer parties that offer relatively intense policy alternatives, parties should adopt positions that are more extreme than the mean voter in their electorates. In this section, we saw that, on average, the probability of voting for a party that is more intense than another is 12.8% higher, while the probability of voting for a party that is more proximate than another is 7.2% higher. On average, these figures suggest that the sensitivity parameter in the policy leadership model is about 12.8/(12.8 + 7.2) or .64. This s-value implies that voters prefer parties that adopt issue positions that are about two times more intense than their own revealed positions, a result that is in agreement with the aggregate pattern of relative party-voter positions discussed in the previous section. Only the policy leadership model correctly specifies this linkage between the way people vote and party issue positions.

Conclusion

Voting behavior among European publics as described in this study does not support the spatial thesis that people prefer politicians who mirror their own political views. On the other hand, voters are not, as suggested by the theory of symbolic politics, simply responding with emotional outbursts of approval or disapproval to symbols propagated by politicians. Instead, West European voters seem to reward parties and candidates who provide them with political leadership and a sense of ideological direction, while they punish politicians for being unresponsive to voter sentiments. The model of representative policy leadership is in good agreement with this portrait of European voters without dispensing with an important set of spatial theorems about party strategies. It is also in agreement with the research program initiated by Rabinowitz and Macdonald in 1989. While they have insisted on the superiority of the pure directional model of voting, which I have criticized in this article, they have always acknowledged the explanatory potential of combining spatial distance and directional intensity. This is reflected in the fact that the utility function used to represent the argument in this study is mathematically equivalent to the mixed model proposed by Rabinowitz and Macdonald (1989).

From the perspective of the representative policy leadership model, democratic politics may be best described as an interactive process in which political elites articulate and influence popular opinion, while the electorate constitutes an emotionally responsive yet critical audience. However, it should be acknowledged that much of this dynamic process remains unexplored in this paper. In particular, we do not know how
"robust" voter utility functions are nor the extent to which elites can influence these over time. Future research will have to sort out the degree to which the "mix" of directional and spatial effects on voting is "fixed" by education, class belonging, preadult socialization, and even political-cultural traits of societies and the degree to which "conjunctural" factors such as economic business cycles and political instability empower politicians to shape and reshape the way people respond to political information. In short, future research needs to move in the direction of endogenizing voters' political "preferences" into a more general model of the psychology of voting.

Manuscript submitted 27 August 1992
Final manuscript received 23 February 1993

APPENDIX A

Below are the survey texts for the questions used in the Eurobarometer and the EPPMILE studies.

Eurobarometer 11

Respondents were asked to indicate their level of agreement with the following statements.

1. Stronger controls should be exercised over the activities of multinational corporations.
2. Greater efforts should be made to reduce inequality of income.
3. More severe penalties should be introduced for acts of terrorism.
4. Nuclear energy should be developed to meet future energy needs.

Respondents could answer: agree strongly, agree, disagree, disagree strongly, don't know/no opinion.

EPPMILE

Respondents were asked to indicate their level of agreement with the following policy measures.

1. There should be far more active control over activities of multinational corporations.
2. Reduce income differences.
3. The most severe penalties should be introduced for acts of terrorism.
4. Nuclear energy should be developed to meet our future energy needs.

Respondents could answer: very much in favor, in favor, against, very much against, don't know/no opinion.
APPENDIX B
Principal Component Factor Analysis of Party Elites and Publics in Six West European Countries (Varimax Rotation)

<table>
<thead>
<tr>
<th></th>
<th>Factor I</th>
<th>Factor II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurobarometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases: 3,346</td>
<td>Greater effort to reduce inequality(^a)</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>Stronger public control over multinationals(^a)</td>
<td>.69</td>
</tr>
<tr>
<td></td>
<td>More public ownership of industry</td>
<td>.63</td>
</tr>
<tr>
<td></td>
<td>More economic aid to Third World countries</td>
<td>.35</td>
</tr>
<tr>
<td></td>
<td>More severe penalties for terrorism(^a)</td>
<td>.70</td>
</tr>
<tr>
<td></td>
<td>Nuclear energy should be developed(^a)</td>
<td>.67</td>
</tr>
<tr>
<td></td>
<td>Stronger military defense effort</td>
<td>.66</td>
</tr>
<tr>
<td>EPPMLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases: 2,996</td>
<td>More control of multinational corporations(^a)</td>
<td>.85</td>
</tr>
<tr>
<td></td>
<td>Reducing income differences(^a)</td>
<td>.81</td>
</tr>
<tr>
<td></td>
<td>Reducing public control of private enterprise</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Most severe penalties for terrorism(^a)</td>
<td>.84</td>
</tr>
<tr>
<td></td>
<td>Taking account of national interest in Third World aid</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>Developing nuclear energy(^a)</td>
<td>.44</td>
</tr>
<tr>
<td></td>
<td>Increasing military expenditures</td>
<td>.50</td>
</tr>
<tr>
<td></td>
<td>.53</td>
<td></td>
</tr>
</tbody>
</table>

Note: Only factor loadings above .20 are shown. Explained variance: Factor I: 16% (voters), 22% (elites); Factor II: 14% (voters), 19% (elites).

*These items are used in the comparative analysis.

APPENDIX C
Countries and Political Parties Included in the Study

Belgium:
- Parti Communiste Belgique (PCB)
- Belgische Socialistische Partij (BSP)
- Parti Socialiste Belge (PSB)
- Christelijke Volkspartij (CVP)
- Parti Social Chrétien (PSC)
- Partij voor Blijfheid en Vooruitgang (PVV)

Britain:
- Labour party (LAB)
- Liberal party (LIB)
- Conservative party (CON)

Denmark:
- Socialistisk Folkeparti (SF)
Socialdemokratiet (SD)
Danmarks Retsforbund (RF)
Kristelig Folkeparti (KrF)
Centrums-Demokraterne (CD)
Venstre (V)
Det Konservative Folkeparti (KF)
Fremskridspartiet (FrP)

France:
Mouvement des Radicaux de Gauche (MRG)
Parti Socialiste Unifié (PSU)
Parti Socialiste (PS)
Union pour la Démocratie Française (UDF)
Rassemblement pour la République (RPR)

Germany:
Sozialdemokratische Partei Deutschlands (SPD)
Freie Demokratische Partei Deutschlands (FDP)
Christlich-Demokratische Union Deutschlands (CDU)
Christlich-Soziale Union Deutschlands (CSU)
Nationaldemokratische Partei Deutschlands (NPD)

Netherlands:
Partij van de Arbeid (PvdA)
Democraten '66 (D'66)
Christian Democratisch Appel (CDA)
Volkspartij voor Vrijheid en Demokratie (VVD)

REFERENCES
Torben Iversen

