In all the ε-δ proofs we did last week, we were able to find the exact value of the largest possible δ for any given ε. However, the algebra does not always work out so cleanly, as the next example demonstrates.

Example 4. $f(x) = \sqrt{x}$

We claim that $\lim_{x \to 16} f(x) = 4$.

Scratch Work.

We must find a $\delta > 0$ such that the following is true.

If , then .

Therefore, choosing $\delta = \ldots$ should work.

Claim. If $f(x) = \sqrt{x}$, then $\lim_{x \to 16} f(x) = 4$.

Proof. Let $\varepsilon > 0$ be given.

We must find a $\delta > 0$ such that if then .

We choose $\delta = \ldots$.
Proof by Contradiction. When it is necessary to show that a function has no limit at a given x-value (as some of you may do in your presentations), it is often necessary to use the method known as “proof by contradiction.”

In this method, in order to prove a statement P is true, we begin by assuming its negation (“not P”) is true and showing that this assumption leads to a contradiction. We then conclude that “not P” is not true; therefore, P must be true, which is what we hoped to prove.

We now look at one famous example of this method of proof, which will require a few definitions and one lemma (which will help us prove our theorem).

Definition. An integer k is even if $k = 2m$ where m is an integer.

Definition. An integer k is odd if $k = 2m + 1$ where m is an integer.

Definition. A real number r is rational if $r = \frac{p}{q}$ where p and q are integers (and can be written in “lowest terms” so that p and q share no common factor other than 1) and q is not zero.

Lemma. If n^2 is even, then n is even.

Proof.

Theorem. The number $\sqrt{2}$ is not rational.

Proof.

We will do a proof by contradiction.

We assume that $\sqrt{2}$ is rational.

Next Week. You will have time to work on your presentations and ask me questions.