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Fig. S1. Our conclusion holds for a more general model of olfactory receptor (OR) activation and feedback. (A) In a generalized model, the detailed kinetics of OR
activation (such as H3K9me3⇄H3K9me2→on) is represented by an arbitrary stochastic process from an “off” state to an “on” state with a first-passage time x, whose
probability density function (PDF) is f(x) and cumulative distribution function (CDF) is F(x). Similarly, the details of feedback (such as OR-activating Adcy3, which then
represses Lsd1) are represented by another stochastic process with a first-passage time y: a PDF g(y) and a CDF G(y). The two processes are connected by an ir-
reversible step that can be turned off after time x + y, which corresponds to the step of H3K9me2 demethylation by Lsd1 in our model (Fig. 1A). Among all n = 2,800
alleles of ORs, the mean time of the earliest activation (namely, the smallest first-passage time of all n values of x) can be calculated according to order statistics:

T =
Z+∞

0

dx n x fðxÞð1− FðxÞÞn−1: [S1]

Similarly, the failure probability can be calculated given any value of the response time y:

Pfail jy =1−
Z+∞

0

dx n fðxÞð1− Fðx + yÞÞn−1: [S2]

Eq. S2 can be easily derived from the joint probability distribution of the earliest activation x(1) and the second-earliest x(2):

Pfail jy = 1−P
�
xð2Þ − xð1Þ < y

�
= 1−

Z+∞

0

dxð1Þ

Zxð1Þ+y

xð1Þ

dxð2Þnðn− 1Þf�xð1Þ�f�xð2Þ��1− F
�
xð2Þ

��n−2
, [S3]

which can be simplified into Eq. S2 by integrating out x(2) and rewriting x(1) as x. When n is sufficiently large, (1 − F(x))n−1 decays rapidly with its argument
x. Therefore, the above integrals are mainly determined by the behavior of f(x) and (1 − F(x)) or (1 − F(x + y)) when x and y are both close to zero. First we
consider two special cases where exact results can be obtained. The “survival probability” (1 − F (x)) must decrease with x and two most natural cases are
exponential decay

1− FðxÞ= expð−fð0ÞxÞ, corresponding to fðxÞ= fð0Þexpð−fð0ÞxÞ, [S4]

and Gaussian decay

1− FðxÞ= exp
�
−f ′ð0Þx2=2�, corresponding to fðxÞ= x   f ′ð0Þexp�−f ′ð0Þx2=2�: [S5]

Legend continued on following page

Tan et al. www.pnas.org/cgi/content/short/1321511111 1 of 4

www.pnas.org/cgi/content/short/1321511111


In the case of an exponential decay of the survival probability (Eq. S4), we can calculate the exact values of T and Pfail from Eqs. S1 and S2:

T =
Z+∞

0

dx n x fðxÞð1− FðxÞÞn−1 =
Z+∞

0

dx n x fð0Þexpð−  n fð0ÞxÞ= 1=ðn fð0ÞÞ, [S6]

which scales with n−1, and

Pfail jy = 1−
Z+∞

0

dx n fðxÞð1− Fðx + yÞÞn−1 = 1−
Z+∞

0

dx n fð0Þexpð−n fð0Þx − ðn− 1Þfð0ÞyÞ= 1− expð−ðn−1Þfð0ÞyÞ: [S7]

If the response time is fixed at Δt (so y = Δt) and n is large [so (n – 1)/n ∼ 1], we arrive at a formula of the failure probability:

Pfail = 1− expð−Δt=TÞ [S8]

≈Δt=Tðapproximation when Δt << TÞ, [S9]

which is independent of n, and completely determined by the ratio Δt/T. Similarly, in the case of a Gaussian decay (Eq. S5), we get

T =
Z+∞

0

dx n x fðxÞð1− FðxÞÞn−1 =
Z+∞

0

dx n x2 f ′ð0Þexp�−n f ′ð0Þx2=2�=√ðπ=ð2n f ′ð0ÞÞÞ, [S10]

which scales with n−0.5, and

Pfail jy = 1−
Z+∞

0

dx n fðxÞð1− Fðx + yÞÞn−1 = 1−
Z+∞

0

dx n x f ′ð0Þexp
�
−f ′ð0Þx2=2− ðn− 1Þf ′ð0Þðx + yÞ2=2

��

= 1− exp
�
−ðn− 1Þf ′ð0Þy2=2�+ ðn− 1Þy√ðπ  f ′ð0Þ=ð2nÞÞ 1− erf

�
ðn− 1Þy√ðf ′ð0Þ=ð2nÞÞ

�
,

� [S11]

where erf() is the error function. If the response time is fixed at Δt (so y = Δt) and n is large [so (n − 1)/n ∼ 1], we arrive at a formula of the failure probability:

Pfail = 1− exp
�
−πðΔt=TÞ2=4

�
+ ðπ=2ÞΔt=T

�
1− erf

�
Δt=2T √π

��
[S12]

≈ ðπ=2ÞΔt=Tðapproximation when Δt << TÞ, [S13]

which is again independent of n, and completely determined by the ratio Δt/T. The above calculation can be carried out not only for exponential or Gaussian
survival functions, but also for any survival functions in the form of 1 − F(x) = exp(−f (m − 1)(0) xm/(m!)), where m is a positive integer and f (m − 1)(0) is the
(m − 1)th derivative of the PDF at x = 0. In these cases, exact solutions can be obtained, and when Δt << T, we have

Pfail ≈ constant Δt=T , [S14]

where the constant is independent of n or the value of f (m − 1)(0), but increases with m. When m = 1, constant = 1; when m = 2, constant = π/2. In general,
a survival probability does not necessarily take the above form; however, because the integrals in Eqs. S1 and S2 only concern x and y very close to zero, any
general distribution can be well approximated by the above forms if its PDF f(x) can be Taylor expanded near x = 0. For example, if f(x) is roughly constant
around zero, namely f(0) > 0, it can be approximated by the first case (exponential survival function). In contrast, if f(x) rises linearly around zero, namely f(0) =
0 but f ′(0) > 0, it can be approximated by the second case (Gaussian survival function). Generally speaking, if f ( m− 1)(0) is the leading derivate of f(x) that does
not vanish at zero, it can be approximated by the exactly solvable case 1 − F(x) = exp(−f (m − 1)(0) xm/(m!)). (B) Our three-state kinetic model has f(0) = 0 but f ′(0)
> 0, so would in principle fall into the second case of a Gaussian survival probability (constant = π/2). However, when n = 2,800 is not large enough, the linear
rise near zero can become negligible. Therefore, when nktotal >> kbottleneck, the PDF is dominated by the exponential fall at longer timescales, which leads to
the first case of an exponential survival probability. The two theoretical solutions (gray curves) fit well with simulations (black dots). Notice that when the
feedback time y is stochastic rather than fixed, the final failure probability is the expectation value of Pfail j y over all possible y:

Pfail =
Z+∞

0

dy g ðyÞ Pfail jy: [S15]

In the physiological condition, Pfail is very small, which means Δt << T. In this situation, Eq. S14 shows that Pfail is approximately linear with respect to the value
of y. Therefore, Pfail is determined by the mean value of y—namely, the mean response time Δt of the feedback.
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Fig. S2. Switching between ORs only marginally affects singularity under the physiological condition, even if the response time of the feedback is primarily
determined by OR or Adcy3 accumulation. In the main text (Fig. 3), we have assumed that the depletion of Lsd1 is the primary determinant of the feedback
response time Δt. Here the accumulation of either OR or Adcy3 is instead assumed to determine Δt. In this alternative model, OR/Adcy3 is produced at a rate
proportional to the number of active OR alleles, and it decays with a rate α when no alleles are active. The steady-state concentration of OR/Adcy3 is one when
one allele is active, and it turns off Lsd1 instantly upon reaching a concentration threshold κ. Therefore, we have the response time Δt = logð1=ð1− κÞÞ=α. We
find that, similar to the Lsd1-limited model in Fig. 3B, OR switching at a physiological probability ∼10% (yellow region) has negligible effect on the extent of
singularity in this OR/Adcy3-limited model. In addition, changes in singularity are only apparent with a relatively large failure probability (e.g., the top black
curve). The discrepancy from the Lsd1-limited case stems from the fact that OR/Adcy3 production is assumed to increase when multiple alleles are active, which
makes the system more likely to end up with multiple ORs and thus undermines the enhancement of singularity. Each data point is the mean of 106 simu-
lations, with α = 0.1 and κ = 0.2 (corresponding to Δt ∼ 2.23).
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Fig. S3. Analytical calculation confirms that switching between ORs does not significantly facilitate singularity. (A) In most cases, when an active OR is turned
off, it is unlikely to be turned on again before another OR is activated. Under this approximation, the switching probability (Pswitch) can be calculated as the
probability that the lifetime of an on state (denoted ton) is shorter than the time Δt for the feedback to take effect. Therefore,

Pswitch = Pðton <ΔtÞ=
ZΔt

0

kswitch expð−kswitchtonÞdton =1− expð−kswitchΔtÞ, [S1]

which fits well with the red lines in Fig. 3B and in Fig. S2. The failure probability (Pfail) can be calculated as the probability that the two following conditions are
both met: The competing allele is activated within Δt after the earlier allele, and it remains on until the feedback takes effect. Therefore, if we denote the time
difference between the first and the second activations as Δx = x(2) − x(1) (using the notation in Fig. S1), we have

Pfail = PðΔt − ton <Δx <ΔtÞ= PðΔx <ΔtÞ− PðΔx <Δt − ton and ton <ΔtÞ= Pfailðkswitch = 0Þ½1− Pswitch Eðtonjton <ΔtÞ=Δt�
= Pfailðkswitch = 0Þ½2− ð1− expð−kswitchΔtÞÞ=ðkswitchΔtÞ�: [S2]

When switching is not so frequent (kswitchΔt << 1), the above expressions become

Pswitch ≈ kswitchΔt [S3]

and

Pfail ≈ Pfailðkswitch = 0Þð1− kswitchΔt=2Þ: [S4]

Therefore, Pfail is proportional to (1 − Pswitch/2) under our approximations. This prediction (gray dashed lines) fits well with simulations (black dots, same data as
in Fig. 3B). (B) There exists an edge case where the above approximation is not satisfied: If kon is sufficiently large, an allele that is turned off can quickly revive
into its on state, before the second allele is activated. This requires both kon >> kme2→me3 and 1/kon << T, and an example is shown above. In this case, most
events of OR turning off (red dashed line) results in the revival of the same allele, whereas “true” switching between different ORs (red solid line) is relatively
rare. We find that switching between ORs actually damages singularity in this case.
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