Periodicity in Sequences Mod 3

STEVEN FINCH

September 5, 2002

0.1. Puzzle. For each positive integer \(k \), consider the ternary sequence \(\{x_n\} \) given initially by

\[
x_n = \begin{cases}
0 & \text{if } 1 \leq n < k \\
1 & \text{if } n = k
\end{cases}
\]

and thereafter determined by the quadratic recurrence

\[
x_n = x_{n-1} + x_{2n-k}^2 \mod 3.
\]

Define \(N \) to be the smallest positive integer for which \(x_{n+N} = x_n \) for all sufficiently large \(n \). For example, if \(k = 4 \), then \(N = 9 \) is obvious by looking at the following \(6 \times 10 \) table of the first 60 terms of \(\{x_n\} \):

\[
\begin{array}{ccccccccccc}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 0 & 1 \\
2 & 0 & 0 & 1 & 2 & 2 & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 & 2 & 0 & 1 & 2 & 0 & 1 \\
0 & 1 & 2 & 2 & 2 & 0 & 1 & 2 & 0 & 1 \\
1 & 2 & 2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\
2 & 2 & 2 & 0 & 1 & 2 & 0 & 1 & 2 & 0 \\
\end{array}
\]

Examine \(N \) as a function of \(k \). What patterns can be seen? Can a formula for \(N(k) \) be written down and proved?

Repeat for the recurrence

\[
x_n = x_{n-1}^2 + x_{n-k} \mod 3.
\]

Repeat for the recurrence

\[
x_n = 2 \left(x_{n-1}^2 + x_{n-1} + x_{n-k}^2 + x_{n-k} \right) \mod 3.
\]
Periodicity in Sequences Mod 3

0.2. Solution by Bob Harder (Wed, 19 Jan 2000 and Thu, 5 Apr 2000).
Using a Fortran program, I found the following results. Corresponding to \(x_n = x_{n-1} + x_{n-k}^2 \mod 3 \), the values of \(N(k) \) for \(1 \leq k \leq 300 \) are

<table>
<thead>
<tr>
<th>(k)</th>
<th>(1)</th>
<th>(4)</th>
<th>(4)</th>
<th>(9)</th>
<th>(19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4</td>
<td>4</td>
<td>22</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>4</td>
<td>45</td>
<td>64</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16.</td>
<td>102</td>
<td>182</td>
<td>213</td>
<td>4</td>
<td>188</td>
</tr>
<tr>
<td>21.</td>
<td>272</td>
<td>4</td>
<td>412</td>
<td>225</td>
<td>202</td>
</tr>
<tr>
<td>26.</td>
<td>4</td>
<td>4</td>
<td>1444</td>
<td>512</td>
<td>4</td>
</tr>
<tr>
<td>31.</td>
<td>4</td>
<td>840</td>
<td>1237</td>
<td>4</td>
<td>1138</td>
</tr>
<tr>
<td>36.</td>
<td>362</td>
<td>1263</td>
<td>4</td>
<td>4</td>
<td>1536</td>
</tr>
<tr>
<td>41.</td>
<td>672</td>
<td>1786</td>
<td>4</td>
<td>701</td>
<td>741</td>
</tr>
<tr>
<td>46.</td>
<td>4</td>
<td>4</td>
<td>2098</td>
<td>3921</td>
<td>5400</td>
</tr>
<tr>
<td>51.</td>
<td>178</td>
<td>1183</td>
<td>2348</td>
<td>4</td>
<td>7698</td>
</tr>
<tr>
<td>56.</td>
<td>6042</td>
<td>5091</td>
<td>4</td>
<td>4</td>
<td>29167</td>
</tr>
<tr>
<td>61.</td>
<td>8946</td>
<td>4</td>
<td>6538</td>
<td>9639</td>
<td>5405</td>
</tr>
<tr>
<td>66.</td>
<td>4</td>
<td>4</td>
<td>10510</td>
<td>4777</td>
<td>4</td>
</tr>
<tr>
<td>71.</td>
<td>4</td>
<td>5034</td>
<td>11211</td>
<td>4</td>
<td>14558</td>
</tr>
<tr>
<td>76.</td>
<td>3066</td>
<td>4759</td>
<td>17902</td>
<td>4</td>
<td>21539</td>
</tr>
<tr>
<td>81.</td>
<td>40389</td>
<td>17446</td>
<td>4</td>
<td>11973</td>
<td>56920</td>
</tr>
<tr>
<td>86.</td>
<td>4</td>
<td>4</td>
<td>31281</td>
<td>36140</td>
<td>4</td>
</tr>
<tr>
<td>91.</td>
<td>4</td>
<td>10651</td>
<td>203212</td>
<td>33019</td>
<td>4</td>
</tr>
<tr>
<td>96.</td>
<td>96163</td>
<td>1396</td>
<td>145571</td>
<td>4</td>
<td>76327</td>
</tr>
<tr>
<td>101.</td>
<td>143483</td>
<td>4</td>
<td>4</td>
<td>72380</td>
<td>61429</td>
</tr>
<tr>
<td>106.</td>
<td>4</td>
<td>17235</td>
<td>27492</td>
<td>100664</td>
<td>4</td>
</tr>
<tr>
<td>111.</td>
<td>4</td>
<td>84035</td>
<td>94965</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>116.</td>
<td>47259</td>
<td>400052</td>
<td>4</td>
<td>4</td>
<td>151402</td>
</tr>
<tr>
<td>121.</td>
<td>294025</td>
<td>4</td>
<td>4</td>
<td>181762</td>
<td>692492</td>
</tr>
<tr>
<td>126.</td>
<td>4</td>
<td>100354</td>
<td>210806</td>
<td>322987</td>
<td>4</td>
</tr>
<tr>
<td>131.</td>
<td>4</td>
<td>984215</td>
<td>175949</td>
<td>981054</td>
<td>4</td>
</tr>
<tr>
<td>136.</td>
<td>397352</td>
<td>462842</td>
<td>4</td>
<td>4</td>
<td>957413</td>
</tr>
<tr>
<td>141.</td>
<td>275502</td>
<td>4</td>
<td>4</td>
<td>1679881</td>
<td>36029</td>
</tr>
<tr>
<td>146.</td>
<td>1123548</td>
<td>4</td>
<td>1538461</td>
<td>387640</td>
<td>210561</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>151.</td>
<td>4</td>
<td>3749445</td>
<td>1548666</td>
<td>1182914</td>
<td></td>
</tr>
<tr>
<td>156.</td>
<td>227890</td>
<td>1400194</td>
<td>4050277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161.</td>
<td>676034</td>
<td>4</td>
<td>4</td>
<td>2664095</td>
<td></td>
</tr>
<tr>
<td>166.</td>
<td>4</td>
<td>4</td>
<td>113597</td>
<td>1677173</td>
<td></td>
</tr>
<tr>
<td>171.</td>
<td>4</td>
<td>3960398</td>
<td>5307574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176.</td>
<td>259088</td>
<td>949486</td>
<td>4</td>
<td>2436872</td>
<td></td>
</tr>
<tr>
<td>181.</td>
<td>1084462</td>
<td>4</td>
<td>4</td>
<td>536399</td>
<td></td>
</tr>
<tr>
<td>186.</td>
<td>1822136</td>
<td>4</td>
<td>1053689</td>
<td>1309962</td>
<td></td>
</tr>
<tr>
<td>191.</td>
<td>662800</td>
<td>30679055</td>
<td>944541</td>
<td>16763097</td>
<td></td>
</tr>
<tr>
<td>196.</td>
<td>2219666</td>
<td>3639002</td>
<td>4</td>
<td>1312457</td>
<td></td>
</tr>
<tr>
<td>201.</td>
<td>12611463</td>
<td>4</td>
<td>229523</td>
<td>18227522</td>
<td></td>
</tr>
<tr>
<td>206.</td>
<td>4</td>
<td>4</td>
<td>101662683</td>
<td>10866685</td>
<td></td>
</tr>
<tr>
<td>211.</td>
<td>4</td>
<td>2766233</td>
<td>7720351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216.</td>
<td>50486796</td>
<td>3439146</td>
<td>16033487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221.</td>
<td>11067157</td>
<td>4</td>
<td>47420245</td>
<td>11610986</td>
<td></td>
</tr>
<tr>
<td>226.</td>
<td>4</td>
<td>4</td>
<td>171869058</td>
<td>57613688</td>
<td></td>
</tr>
<tr>
<td>231.</td>
<td>4</td>
<td>20998052</td>
<td>16488799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236.</td>
<td>48025298</td>
<td>207519004</td>
<td>95200240</td>
<td>116487110</td>
<td></td>
</tr>
<tr>
<td>241.</td>
<td>5955863</td>
<td>41293535</td>
<td>4</td>
<td>56682340</td>
<td></td>
</tr>
<tr>
<td>246.</td>
<td>4</td>
<td>380735127</td>
<td>267670003</td>
<td>37343749</td>
<td></td>
</tr>
<tr>
<td>251.</td>
<td>4</td>
<td>109684778</td>
<td>171544193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256.</td>
<td>188144755</td>
<td>187320823</td>
<td>4</td>
<td>148911063</td>
<td></td>
</tr>
<tr>
<td>261.</td>
<td>382756108</td>
<td>4</td>
<td>4</td>
<td>21728944</td>
<td></td>
</tr>
<tr>
<td>266.</td>
<td>4</td>
<td>4</td>
<td>120008165</td>
<td>691866997</td>
<td></td>
</tr>
<tr>
<td>271.</td>
<td>4</td>
<td>123922907</td>
<td>371084103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.</td>
<td>1266097558</td>
<td>1085490144</td>
<td>185873692</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>281.</td>
<td>726332461</td>
<td>54268184</td>
<td>807480832</td>
<td>1460380578</td>
<td></td>
</tr>
<tr>
<td>286.</td>
<td>4</td>
<td>4</td>
<td>132038193</td>
<td>225767537</td>
<td></td>
</tr>
<tr>
<td>291.</td>
<td>4</td>
<td>208594635</td>
<td>199568196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>296.</td>
<td>954401729</td>
<td>323746606</td>
<td>1219015821</td>
<td>4</td>
<td>1693584038</td>
</tr>
</tbody>
</table>
Corresponding to \(x_n = x_{n-1}^2 + x_{n-k} \mod 3 \), the values of \(N(k) \) for \(1 \leq k \leq 23 \) are

\[
\begin{array}{cccccc}
k & 1 & 8 & 22 & 45 & 138 \\
6 & 415 & 916 & 3998 & 13142 & 38763 \\
11 & 60718 & 44686 & 121298 & 2068731 & 11214378 \\
16 & 25158877 & 3909879 & 299954193 & 977046702 & 3028468981 \\
21 & 1107563239 & 2983913960 & 91973871622
\end{array}
\]

and corresponding to \(x_n = 2\left(x_{n-1}^2 + x_{n-1} + x_{n-k}^2 + x_{n-k}\right) \mod 3 \), the values of \(N(k) \) for \(1 \leq k \leq 36 \) are

\[
\begin{array}{cccccc}
k & 1 & 3 & 7 & 15 & 21 \\
6 & 63 & 127 & 63 & 73 & 889 \\
11 & 1533 & 3255 & 7905 & 11811 & 32767 \\
16 & 255 & 273 & 253921 & 413385 & 761763 \\
21 & 5461 & 4194303 & 2088705 & 2097151 & 10961685 \\
26 & 298935 & 125829105 & 17895697 & 402653181 & 10845877 \\
31 & 2097151 & 1023 & 1057 & 255652815 & 3681400539 \\
36 & 22839252821
\end{array}
\]

I am still looking for patterns in this data....