Experimental mean is 0.09062; mean square is 0.01001

Arbitrary Side for R=0.1

Density

0.00 0.05 0.10 0.15 0.20

Arbitrary Side for R=0.1
Experimental mean is 1.04600; mean square is 1.72422

Arbitrary Angle for R=0.1
Experimental mean is 0.27177; mean square is 0.08036

Perimeter for R=0.1

Density

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0 1 2 3 4

Perimeter for R=0.1
Experimental mean is 0.00232; mean square is 0.00001
Product of two arbitrary sides for $R=0.1$:
 Experimental mean is 0.00839; correlation is 0.10225

Product of two arbitrary angles:
 Experimental mean is 0.77938; correlation is −0.49870

Product of side and adjacent angle:
 Experimental mean is 0.08448; correlation is −0.30949

Product of side and opposite angle:
 Experimental mean is 0.11558; correlation is 0.61677

Product of perimeter and area:
 Experimental mean is 0.00075; correlation is 0.76076

Experimental acuteness probability is 0.28107
Possesses circumcenter with probability 0.98023
Experimental mean is 0.45723; mean square is 0.25460
Experimental mean is 1.02795; mean square is 1.68105
Experimental mean is 1.37185; mean square is 2.04641
Experimental mean is 0.05738; mean square is 0.00564
Product of two arbitrary sides for R=0.5:
 Experimental mean is 0.21356; correlation is 0.10090

Product of two arbitrary angles:
 Experimental mean is 0.74450; correlation is −0.49858

Product of side and adjacent angle:
 Experimental mean is 0.41685; correlation is −0.31910

Product of side and opposite angle:
 Experimental mean is 0.57243; correlation is 0.60737

Product of perimeter and area:
 Experimental mean is 0.09371; correlation is 0.76326

Experimental acuteness probability is 0.30557
Possesses circumcenter with probability 0.90191
Experimental mean is 0.93863; mean square is 1.06701
Experimental mean is 0.97400; mean square is 1.55454
Experimental mean is 2.81593; mean square is 8.60768
Experimental mean is 0.22082; mean square is 0.08007
Experimental mean is 5.48131; mean square is 33.32774
Theoretical mean is 5.48191; mean square is 33.33651
Product of two arbitrary sides for R=1.0:
Experimental mean is 0.90157; correlation is 0.10881

Product of two arbitrary angles:
Experimental mean is 0.65097; correlation is −0.49112

Product of side and adjacent angle:
Experimental mean is 0.79794; correlation is −0.34466

Product of side and opposite angle:
Experimental mean is 1.10768; correlation is 0.57631

Product of perimeter and area:
Experimental mean is 0.73380; correlation is 0.76853

Experimental acuteness probability is 0.37279
Possesses circumcenter with probability 0.80885

Product of two arbitrary normalized sides:
Experimental mean is 30.50896; correlation is 0.13932
Theoretical mean is 30.50813; correlation is 0.13906
Experimental mean is 1.46587; mean square is 2.57847
Experimental mean is 0.89125; mean square is 1.36878
Experimental mean is 4.39631; mean square is 20.92039
Experimental mean is 0.46998; mean square is 0.34152
Experimental mean is 1.53612; mean square is 3.19697
Theoretical mean is 1.53616; mean square is 3.19817

Arbitrary Normalized Side for R=1.5
Product of two arbitrary sides for $R=1.5$:
 Experimental mean is 2.19850; correlation is 0.11686

Product of two arbitrary angles:
 Experimental mean is 0.52672; correlation is -0.46521

Product of side and adjacent angle:
 Experimental mean is 1.11721; correlation is -0.37678

Product of side and opposite angle:
 Experimental mean is 1.56791; correlation is 0.52625

Product of perimeter and area:
 Experimental mean is 2.40651; correlation is 0.77641

Experimental acuteness probability is 0.46290
Possesses circumcenter with probability 0.72574

Product of two arbitrary normalized sides:
 Experimental mean is 2.48640; correlation is 0.15127
 Theoretical mean is 2.48781; correlation is 0.15269
Experimental mean is 2.05177; mean square is 4.98982

Arbitrary Side for R=2.0
Experimental mean is 0.78674; mean square is 1.15010
Experimental mean is 6.15561; mean square is 40.83276
Experimental mean is 0.77796; mean square is 0.87476
Experimental mean is 0.74350; mean square is 0.92684
Theoretical mean is 0.74310; mean square is 0.92475
Product of two arbitrary sides for R=2.0:
 Experimental mean is 4.31189; correlation is 0.12850

Product of two arbitrary angles:
 Experimental mean is 0.39933; correlation is −0.41620

Product of side and adjacent angle:
 Experimental mean is 1.34970; correlation is −0.41184

Product of side and opposite angle:
 Experimental mean is 1.91319; correlation is 0.46449

Product of perimeter and area:
 Experimental mean is 5.48643; correlation is 0.78349

Experimental acuteness probability is 0.55901
Possesses circumcenter with probability 0.65494

Product of two arbitrary normalized sides:
 Experimental mean is 0.61544; correlation is 0.16639
 Theoretical mean is 0.61412; correlation is 0.16621
Experimental mean is 3.42208; mean square is 13.43907
Experimental mean is 0.56202; mean square is 0.73885
Experimental mean is 10.26413; mean square is 112.05849
Experimental mean is 1.45576; mean square is 2.68613
Experimental mean is 0.37247; mean square is 0.30603
Theoretical mean is 0.37244; mean square is 0.30613
Product of two arbitrary sides for $R=3.0$:
 Experimental mean is 11.95522; correlation is 0.14492

Product of two arbitrary angles:
 Experimental mean is 0.19863; correlation is −0.27702

Product of side and adjacent angle:
 Experimental mean is 1.52385; correlation is −0.46530

Product of side and opposite angle:
 Experimental mean is 2.20964; correlation is 0.33492

Product of perimeter and area:
 Experimental mean is 16.47425; correlation is 0.78580

Experimental acuteness probability is 0.72829
Possesses circumcenter with probability 0.55373

Product of two arbitrary normalized sides:
 Experimental mean is 0.16926; correlation is 0.18293
 Theoretical mean is 0.16975; correlation is 0.18539
Experimental mean is 6.81552; mean square is 50.18371
Experimental mean is 0.20741; mean square is 0.21895
Experimental mean is 20.44821; mean square is 433.20736
Experimental mean is 2.51961; mean square is 6.82454
Experimental mean is 0.26394; mean square is 0.18101
Theoretical mean is 0.26385; mean square is 0.18074
Product of two arbitrary sides for R=5.0:
 Experimental mean is 47.11198; correlation is 0.17309

Product of two arbitrary angles:
 Experimental mean is 0.03460; correlation is −0.04788

Product of side and adjacent angle:
 Experimental mean is 1.02680; correlation is −0.47620

Product of side and opposite angle:
 Experimental mean is 1.53092; correlation is 0.14474

Product of perimeter and area:
 Experimental mean is 53.47971; correlation is 0.73084

 Experimental acuteness probability is 0.92247
 Possesses circumcenter with probability 0.47659

Product of two arbitrary normalized sides:
 Experimental mean is 0.09154; correlation is 0.19611
 Theoretical mean is 0.09160; correlation is 0.19787
Experimental mean is 16.61771; mean square is 281.39132
Experimental mean is 0.00581; mean square is 0.00388
Experimental mean is 49.84920; mean square is 2506.57387
Experimental mean is 3.12413; mean square is 9.77300
Experimental mean is 0.25055; mean square is 0.16733
Theoretical mean is 0.25009; mean square is 0.16676
Product of two arbitrary sides for R=10.0:
 Experimental mean is 277.07145; correlation is 0.18920

Product of two arbitrary angles:
 Experimental mean is 0.00026; correlation is 0.05942

Product of side and adjacent angle:
 Experimental mean is 0.06507; correlation is –0.22128

Product of side and opposite angle:
 Experimental mean is 0.09860; correlation is 0.01502

Product of perimeter and area:
 Experimental mean is 155.91775; correlation is 0.34494

Experimental acuteness probability is 0.99866
Possesses circumcenter with probability 0.45975

Product of two arbitrary normalized sides:
 Experimental mean is 0.08333; correlation is 0.20057
 Theoretical mean is 0.08339; correlation is 0.19999