Aissen’s Convex Set Function

STEVEN FINCH

September 29, 2014

Let D be a bounded open convex set in the plane and let C denote the boundary of D. For each $p \in D$ and $q \in C$, let h_{pq} be the Euclidean distance from p to the support line (tangent line) to D at q. Let ds_q denote the line element at q. It is known that [1, 2]

$$\text{arclength of } C = \int_C ds_q,$$

$$\text{area of } D = \frac{1}{2} \int_C h_{pq} ds_q \quad \text{(independent of } p),$$

$$r(D) = \text{inradius of } D = \max_{p \in D} \min_{q \in C} h_{pq}$$

where r is the radius of the largest disk contained by D [3]. The boundary of such a disk is called an incircle; its center is called an incenter. Aissen [1, 2] studied the function

$$B(D) = \min_{p \in D} \int_C h_{pq}^{-1} ds_q$$

and deduced that the optimizing point p corresponds to an incenter of D if D is a triangle, parallelogram, regular polygon or ellipse. (We are careful to say “an incenter” rather than “the incenter”; a suitably elongated parallelogram has infinitely incircles, all of the same radius. In contrast, the incenter for an arbitrary triangle is unique.) This is a remarkable feature of B. It is natural to wonder whether the same is true for an arbitrary convex set.

The simplest counterexample is a trapezoid with vertices $(\pm 1, 1), (\pm 3, -1)$, for which the optimizing point p has x-coordinate 0 (by symmetry) but y-coordinate > 0. More generally, examine the trapezoid with vertices $(\pm (\sqrt{2} - 1 + t), 1), (\pm (\sqrt{2} + 1 + t), -1)$ where $t \geq 0$ is fixed. The integral within B becomes a sum of four ratios:

$$2 \left(\frac{\sqrt{2} - 1 + t}{1 - y} + \frac{\sqrt{2} + 1 + t}{1 + y} + \frac{2}{\sqrt{2} + t + x - y} + \frac{2}{\sqrt{2} + t - x - y} \right)$$

Copyright © 2014 by Steven R. Finch. All rights reserved.
Aissen’s Convex Set Function

2

each of the form sidelength/distance. As an instance, the rightmost side has equation
\[v - \frac{1}{\sqrt{2}} = -u + \left(\frac{1}{\sqrt{2}} + t \right) \]
in the uv-plane, that is, \(u + v - \sqrt{2} - t = 0 \). The distance from the point \((x, y) \) to the line is
\[\frac{|x + y - \sqrt{2} - t|}{\sqrt{1^2 + 1^2}} = \frac{\sqrt{2} + t - x - y}{\sqrt{2}} \]
and the sidelength is \(\sqrt{2^2 + 2^2} = 2\sqrt{2} \). Forming a ratio gives the final term in the sum. Differentiating the sum with respect to \(x \), we see that \(x = 0 \) is necessary for minimization. The derivative with respect to \(y \) is more complicated. In the special case \(t = 0 \), each of the trapezoidal sides is tangent to the unit circle, thus \(y = 0 \).

Another counterexample – the half-disk \(0 \leq v \leq \sqrt{1 - u^2} \) – comes from [1, 2]. Again \(x = 0 \) follows by symmetry. The integral within \(B \) here becomes
\[\frac{2}{y} + \frac{2\arcsin(y) + \pi}{\sqrt{1 - y^2}} \]
and is minimized when \(y = 0.5432763603... > 1/2 \). The value of \(B \) itself is 8.7915361561... Such values play a role in estimating hard physical quantities like torsional rigidity \(P \) in terms of area \(A \) [4]. For the half-disk, \(P \) turns out to be known exactly and the lower bound [5]
\[0.2975567820... = \frac{\pi}{2} - \frac{4}{\pi} = P \geq A^2 B^{-1} = \frac{(\pi/2)^2}{8.7915361561...} \approx 0.280 \]
is excellent.

Returning to geometry, let \(d_{pq} \) simply be the Euclidean distance from \(p \) to \(q \). Clearly
\[R(D) = \text{circumradius of } D = \min_{p \in D} \max_{q \in C} d_{pq} \]
where \(R \) is the radius of the smallest disk containing \(D \) [3]. The boundary of such a disk is called a circumcircle; its center is called a circumcenter. The circumcenter for an arbitrary convex set is unique. We wonder if a “dual” to Aissen’s function can be defined and what its interplay with the circumcenter for various \(D \) might be.
Aissen’s Convex Set Function

References

