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ABSTRACT

A procedure is presented to systematically construct simple models for the linear stability of moist con-
vecting atmospheres. First, linear response functions of a cumulus ensemble constructed from cloud-system-
resolving models are coupled with matrices expressing two-dimensional large-scale linear wave dynamics.
For a radiative–convective equilibrium reference state, this model gives two branches of unstable modes:
a propagating convectively coupled wave branch and a stationary branch related to storage of column-
integrated moist static energy (MSE). The stationary branch is unstable only when radiative feedback is
included, while the convectively coupled wave branch is less affected by radiative feedback. With a modular
order-reduction procedure from control theory, the linear-response-function-based model is reduced to a
system of six ordinary differential equations while still capturing the essential features of the unstable modes
(eigenvalues and structures). The six-dimensional system is then split into a slow and a fast manifold. The slow
manifold (again, reflecting column MSE storage) is essential for the stationary mode but not for the con-
vectively coupled waves. The fast manifold is then transformed into a form similar to that of prior simple
models of convectively coupled waves, thus placing those models and the insights derived from them on a
firmer footing. The procedure also better quantifies the parameters of such simple models and allows the
stability difference between different reference states to be better understood.

1. Introduction

Cloud-system-resolving model (CSRM) simulations
subject to horizontally or zonally homogeneous bound-
ary and forcing conditions can spontaneously develop
large-scale circulations in the homogeneous direction.
One example is the convectively coupled waves, which
can develop without feedbacks from radiation or sur-
face fluxes (e.g., Grabowski and Moncrieff 2001; Tulich
et al. 2007; Kuang 2008a; Nasuno et al. 2008; Blanco
et al. 2016), and appear comparable in structure and
propagation characteristics to such waves observed in
nature (e.g., Chang 1970; Hendon and Liebmann 1991;
Takayabu and Nitta 1993; Takayabu 1994; Wheeler and
Kiladis 1999; Wheeler et al. 2000; Straub and Kiladis
2002; Haertel and Kiladis 2004). Readers are referred to
Kiladis et al. (2009) for a review and a historical account

of the observational studies. With additional feedbacks,
particularly the radiative feedback, another type of
spontaneous development of large-scale circulations
appears possible, and the resulting slow-moving or sta-
tionary disturbances do not align with the dispersion
curves of gravity waves or equatorial waves. This pro-
cess in closed or periodic numerical domains is known as
convective self-aggregation (e.g., Bretherton et al. 2005;
Muller and Held 2012; Wing and Emanuel 2014;
Holloway and Woolnough 2016; Wing and Cronin 2016;
Holloway 2017; Wing et al. 2017). Readers are referred
to Mapes (2016) and Wing et al. (2017) for recent re-
views. Its connection to the observed Madden–Julian
oscillation (MJO) has been suggested (Arnold and
Randall 2015; Holloway et al. 2017).

A number of simple models have been proposed for
the convectively coupled waves (e.g., Lindzen 1974;
Emanuel 1987; Neelin et al. 1987; Wang 1988; Mapes
2000; Khouider and Majda 2006; Fuchs and Raymond
2007; Kuang 2008b, hereafter K08) and convective self-
aggregation (Bretherton et al. 2005; Emanuel et al. 2014).
These simple models were constructed to facilitate
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understanding, not for quantitative accuracy, and have
provided valuable insights into the potential mecha-
nisms of these phenomena. However, treatment of
convection in these models largely relied on the physical
intuitions of their creators instead of systematic simpli-
fications or approximations of more complete models.

In this study, I shall consider a CSRM to provide an
adequate, or at least relevant, representation of moist
convecting atmospheres. For the convectively coupled
waves, the resemblance between simulated and ob-
served wave structures and dispersion relationships
bolsters confidence in such an assumption. For the
convective self-aggregation problem, where the depen-
dence on numerical resolution and model configurations
is stronger (e.g., Muller and Held 2012), confidence in
this assumption is lower. Still, there is value in under-
standing such behaviors of the CSRM, notwithstanding
the potential biases.

For understanding the linear stability of moist con-
vecting atmospheres (as represented by the CSRMs)
or their responses to weak forcing, linear response
functions constructed from horizontally cyclic limited-
domain CSRMs usefully encapsulate the macroscopic
behavior of moist convection. When coupled with line-
arized large-scale dynamics, this approach can provide
the needed linear models for such problems. This was
used to study the convectively coupled waves (Kuang
2010) and weakly forced mock Walker cells (Kuang
2012). The latter study also noted the need to match the
form of convection in the cyclic limited-domain CSRM
(e.g., the extent of its organization) with the form of
convection in the large-scale moist convecting atmo-
spheres that one seeks to understand.

Models based on the linear response functions, how-
ever, are of too-high dimensions to analyze like the
simple models referred to earlier. The purpose of this
study is to bridge this gap, by developing simple models
and constraining their parameters more systematically
from the linear-response-functions-based models, with
the simplifications and idealizations taken made clearer.
This will place the simple models, and the insights de-
rived from them, on a firmer footing.

This paper is Part I of a two-part study, presenting this
procedure and its application to convectively coupled
waves. The application to convective self-aggregation is
described in Part II.

The rest of the paper is organized as follows. Section 2
describes the CSRM, the simulation setups, and the
procedure used to construct the linear response func-
tions. Section 3 presents the linear stability results from
the linear-response-functions-based models. Section 4
presents the results from a model order-reduction pro-
cedure that reduces the problem into a set of six coupled

ordinary differential equations (ODEs). In section 5,
I split the system into a fast and a slow manifold and
show that the slow manifold is essential for modes that
resemble convective self-aggregation but not for the
convectively coupled waves. Section 6 describes further
simplifications that transform the fast manifold dynam-
ics to a form similar to that of previous simple models
of convectively coupled waves and discusses the im-
plications to convectively coupled wave dynamics.
The model is then applied to understand the difference
in the stability of convectively coupled waves between
the two mean states presented in Kuang (2010). Con-
cluding remarks are presented in section 7.

2. Construction of the linear response functions
from CSRMs

a. Description of the CSRM and simulation setups

All CSRM experiments were performed with the
System for Atmospheric Modeling (SAM), version
6.7.5. A description of an earlier version of this model is
given in Khairoutdinov and Randall (2003). The model
solves the anelastic equations of motion. The prognostic
thermodynamic variables are the liquid water static
energy, total nonprecipitating water, and total precipi-
tating water. I use a bulk microphysics scheme and a
simple Smagorinsky-type scheme to parameterize the
effect of subgrid-scale turbulence. Surface latent and
sensible heat fluxes are computed using a bulk aerody-
namic formula with a constant 10-m exchange coeffi-
cient of 1 3 1023 and a constant surface wind speed
of 5 m s21 to eliminate wind-induced surface heat ex-
change, the effects of which will be explored in the
future. Therefore, for convective self-aggregation, I
will be focusing on the problem of linear radiative–
convective instability, as emphasized in, for example,
Emanuel et al. (2014). Surface momentum fluxes are
computed with the Monin–Obukhov similarity theory.
Radiation is computed using the National Center for
Atmospheric Research Community Atmosphere Model
(CAM) radiation package (Collins et al. 2006). Shorter
integrations using RRTM radiation (Iacono et al. 2008)
gave similar results. For simplicity, I have removed the
diurnal cycle by setting the solar zenith angle constant
at 51.78 and the solar constant at 685 W m22.

All experiments are over an ocean surface with fixed
temperature and doubly periodic lateral boundary
conditions. The domain size is 128 km 3 128 km in the
horizontal with a 4-km horizontal resolution. There are
28 vertical layers that extend from the surface to 32 km,
the top third of the domain being a wave-absorbing
layer, similar to that used in the superparameterized
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CAM (SPCAM), which have been shown to produce
convectively coupled waves, convective self-aggregation,
and the MJO (e.g., Khairoutdinov et al. 2008; Arnold
and Randall 2015). The relatively coarse horizontal and
vertical resolutions were chosen both to reduce the cost
associated with the calculations of the linear response
functions and to make the results directly applicable to
the interpretation of SPCAM results in the future.

b. Reference mean states

Two mean states are used in this paper (Part I), and
more cases will be discussed in Part II.

The first mean state is that of a radiative–convective
equilibrium (RCE) with zero horizontal-mean vertical
velocity over the CSRM domain. The sea surface tem-
perature (SST) is set to 308C to facilitate direct com-
parisons with Emanuel et al. (2014). Fully interactive
radiative feedback is included in this case.

In the other reference state, the domain-mean vertical
velocity profile is set to be the mean vertical velocity
profile over the large-scale array during the intensive
operating period of the Tropical Ocean and Global
Atmosphere Coupled Ocean–Atmosphere Response
Experiment (TOGA COARE; Webster and Lukas
1992), as shown in Fig. 1 of Kuang (2008a). The SST is
29.58C. Based on results for RCE over a range of SSTs
(not shown), the SST difference between the RCE and
TOGA cases is inconsequential for their linear stability
differences discussed in this paper. Radiative cooling is
prescribed to be the long-term averages of a control run
with interactive radiation. This case will be referred to as
the TOGA case. The main purpose of the TOGA case is
to elucidate the dependence of convectively coupled
waves on the mean state.

c. Construction of the linear response functions

The construction of the linear response functions from
cyclic limited-domain CSRMs follows Kuang (2010,
2012) and is briefly described below.

Define the departures of horizontally averaged profiles
of temperature T and moisture q of the limited-domain
CSRM from a given reference state to constitute the
mean-field state vector, denoted as x. If I assume the
small-scale convective motions to be in statistical equi-
librium with the (mean field) state vector, the expected
values of the horizontally averaged convective tenden-
cies (dx/dt)conv are unique functions of the state vector.
The linear response functions are a linear approxima-
tion of this function around the given reference state.

To construct the linear response functions, I added a
set of sufficiently complete, time-invariant, horizontally
homogeneous, anomalous temperature or moisture
tendencies, one at a time, to the forcing of the CSRM.

The full set of the anomalous forcing is denoted as F, the
columns of which are the forcing tendencies added in
each of the experiments. The specific form and ampli-
tude of the forcings follow those of Kuang (2012). We
then ran the CSRM to statistical steady state and aver-
aged the departures of the horizontal-mean temperature
and moisture profiles from those of a control experiment
without the anomalous tendencies over a long period
(10 000 days in the present case). As stratosphere water
vapor does not actively participate in the convective
process, specific humidity above 150 hPa is considered
slaved to the state below and excluded from the state
vector. This set of the anomalous (mean field) state
vectors, one for each forcing, is denoted as X. Averaged
over a long period in statistical steady state, convective
tendencies are precisely balanced by the imposed
anomalous forcing. Therefore, the linear response
functions M can be constructed through a matrix in-
version, M 5 2FX21 so that

�
dx
dt

�

conv
5 Mx . (1)

The construction is most (least) accurate for eigen-
modes of M associated with the smallest (largest) (in
modulus) eigenvalues. There are sometimes large
positive eigenvalues. Since the limited-domain CSRM
evidently has a stable steady state, we set those posi-
tive eigenvalues to 248 day21. The precise value of
this assigned large negative eigenvalue is inconse-
quential when the tendencies are integrated over an
hour or more.

For the RCE case, I further record the anomalous
radiative heating for each of the experiments, which
form the columns of matrix Z. Contributions from the
radiative effects to the linear response functions are
computed as R 5 2ZF21M, where any positive eigen-
values of M have been adjusted.

Linear response functions without radiative contri-
butions are computed by subtracting R from the tem-
perature tendency portion of M. I have also constructed
the linear response functions for the RCE case with
prescribed radiative cooling, set to the long-term-
averaged radiative cooling of the control run with in-
teractive radiation. Results from the two constructions
are generally similar.

I have also computed the linear response functions
due to the clear-sky radiative effects only or due to
cloud radiative effects only. To do so, I first compute
the clear-sky radiative heating for the RCE mean state.
I then perturb the temperature and humidity in each
of the model layers, one variable and one layer at a
time, and recompute the clear-sky radiative heating.
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The difference between the resulting clear-sky radiative
heating and that of the RCE mean state gives the clear-
sky radiative effect of the temperature and moisture
perturbations Rclr. The clear-sky radiative effects de-
fined here are only a function of the horizontally aver-
aged temperature and humidity, in line with Emanuel
et al. (2014). While, in principle, horizontal temperature
and moisture variations could affect the clear-sky radi-
ation because of nonlinearities in radiative transfer, in
practice, such effects are small. Difference between
the clear-sky radiative effects Rclr and the full radiative
effect R is attributed to the cloud radiative effect Rcld.

The linear response functions here are constructed
from limited-domain CSRM simulations that contain
mostly unorganized convection. This is deemed suitable
for the initial growth stage of linearly unstable modes.
In contrast, for the steady-state problem of weakly
forced mock Walker cells of Kuang (2012), propagating
convectively coupled waves organized convection into
strong squall lines, and this difference in the form of

convection led to different linear responses that were
found to be important in that problem.

Figure 1 shows the linear response functions for the
RCE case, with the radiative contributions removed,
and Fig. 2 shows the all-sky and clear-sky radiative
responses R and Rclr. All tendencies are averaged over
2 h. Moisture perturbations are presented in terms of
a 20% reduction in the relative humidity for ease of
comparison with Fig. 4 of Emanuel et al. (2014). The
color scale in Fig. 1c is saturated for perturbations in
the boundary layer moisture to highlight the response to
moisture perturbations in the free troposphere.

General features of the linear response functions
were discussed in more detail in Kuang (2012). Briefly, a
warm or moist anomaly in the subcloud layer (below
;900 hPa) leads to cooling and drying locally and
warming above; a warm anomaly in the free troposphere
leads to cooling at and above the perturbed layer,
while a moist anomaly in the free troposphere leads to
warming at and above the perturbed layer.

FIG. 1. The four quadrants of the 2-h-average linear response function for the RCE case. The horizontal axis is the
pressure of the perturbed layer, and the vertical axis is the pressure of the responding layer. Each column of the
matrices is normalized by the mass of the perturbed layer.
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Clear-sky radiative responses to temperature pertur-
bations resemble Newtonian cooling (negative on the
diagonal). Clear-sky radiative response to moisture
perturbation shows the expected behavior that a re-
duction in relative humidity of a layer reduces radiative
cooling in this layer while enhancing radiative cooling
in the layers below, similar to that shown in Fig. 4
of Emanuel et al. (2014). The 2-h-averaged radiative
heating anomalies shown in Fig. 2 include contributions
from temperature and moisture anomalies produced
over the 2-h period in response to the initial pertur-
bations. This is particularly evident in the upper-
tropospheric responses to boundary layer perturbations.

Cloud radiative response, taken as R minus Rclr,
tends to peak in the upper troposphere. It shows strong
association with anomalous convective heating: when
there is stronger convective heating in the bulk of the
troposphere, there is anomalous radiative heating in
the upper troposphere and weaker anomalous radia-
tive cooling over a thinner layer near the tropopause.
This radiative response is largely associated with the

anvil clouds and is dominated by longwave effects
partially compensated by shortwave effects.

The linear response functions for the TOGA case are
presented in Fig. 3. There are no radiative contributions.
Note the scale difference between Figs. 1 and 3. This
was done because the mean rainfall in the TOGA case
(8.9 mm day21) is about 2.5 times that in the RCE case
(3.6 mm day21). See Fig. 2 of Kuang (2010) for a com-
parison of the vertical structures of mean convective
heating, as well as the moister mean relative humidity
profile of the TOGA case.

A comparison of Figs. 1 and 3 shows that responses
to lower-tropospheric temperature anomalies tend to
have a stronger upper-troposphere extension in the
RCE case compared to the TOGA case. There is also a
hint of a stronger heating response and a weaker mois-
ture response to midtroposphere moisture perturbations
in the TOGA case (after adjusting for the factor-of-2.5
difference in mean convective heating). Note however
that the fast-decaying eigenvectors tend to dominate
these figures and mask the more slowly decaying modes,

FIG. 2. (a),(c) All-sky and (b),(d) clear-sky radiative responses (2-h averages) to perturbations to the (a),(b)
temperature and (c),(d) relative humidity fields. Axes and normalization follow that of Fig. 1.
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which can be more important for coupling with large-
scale dynamics. The model order-reduction procedure
described later will allow a more informative compari-
son between the two in the context of a simple model.

3. Linear stability results based on the linear
response functions

We shall now consider the linear stability problem
when moist convection is coupled to 2D linear gravity
waves. This prototype problem captures the basic as-
pects of the coupling between convection and large-
scale dynamics, upon which effects such as those from an
equatorial b plane can be added (e.g., Andersen and
Kuang 2008).

For each horizontal wavenumber k, I can write the
system as

d
dt

�
x
w

�
5

�
M A

k2C D

��
x
w

�
, (2)

where x, as stated earlier, is a vector that contains the
vertical profiles of temperature T and specific humidity

q, M is the linear response function derived from the
CSRM, A represents the effect of vertical tempera-
ture and moisture advection on x, k2C is the effect of
T and q on the vertical velocity profile w (through hy-
drostatic balance, horizontal momentum equation, and
continuity), and D represents momentum damping,
treated here as Rayleigh damping.

For simplicity, I neglect the virtual effect in the large-
scale wave dynamics, which was found to have only a
minor contribution, and assume a rigid lid (w 5 0) at
175 hPa, as a radiating upper boundary condition is not
essential for the instabilities that I shall consider.

The growth rates and phase speeds of the unstable
modes for the RCE case with a Rayleigh damping
time of 1 day are shown in the top panels of Fig. 4. With
full radiative feedback, there are two branches of unstable
modes: a propagating convectively coupled wave branch
with wavelengths of thousands of kilometers and speeds
near 20ms21 (only the positive phase speeds are shown)
and a stationary branch, possibly identified as convective
self-aggregation, with growth rates peaking at a wave-
length of ;15 000 km. Representative structures of the

FIG. 3. As in Fig. 1, but for the TOGA case with the color scales 2.5 times larger.
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unstable convectively coupled wave mode and the sta-
tionary mode are shown in Figs. 5 and 6.

One should not extrapolate the growth rates for the
convectively coupled waves to higher horizontal wave-
numbers to infer ultraviolet catastrophe (unbound
growth rates as horizontal wavenumber increases).
First, the scale separation between convection and the
large-scale flow inherent in the framework adopted
here will not apply when the horizontal wavelength
becomes shorter than a few hundred kilometers. More-
over, the linear response functions, and thus the growth-
rate calculations, assume that convection is always in
statistical equilibrium with the large-scale flow. When
the finite time that convection takes to respond to the
large-scale flow is taken into account, growth rates for
the convectively coupled wave branch at high wave-
numbers are preferentially reduced (e.g., Emanuel
et al. 1994).

The stationary mode decays without radiative feed-
backs, while clear-sky and cloud radiative effects ap-
pear to destabilize the stationary modes roughly equally
for this reference state. The convectively coupled waves
are less affected by the different choices of radiative
feedbacks.

The growth rates and the phase speeds of the un-
stable modes for the TOGA case are shown in Fig. 7.
The strength of Rayleigh damping is reduced to
0.1 day21 so that convectively coupled waves can be
unstable for this case. When the same (0.1 day21)
Rayleigh damping is used in the RCE case, growth
rates for convectively coupled waves are much greater,
while the maximum growth rates for the stationary
mode were little changed except with the peak shifting
to lower wavenumbers (not shown). That the TOGA
case has weaker convectively coupled wave instabil-
ity was noted in Kuang (2010), and a more concrete

FIG. 4. (right) Linear growth rates and (left) the phase speed of the unstable modes for the RCE case for (top) the
full model and (bottom) the reduced sixth-order model. The different choices for radiative feedbacks are repre-
sented by different colors: full all-sky radiative feedback (black), no radiative feedback (red), clear-sky radiative
feedback only (blue), and cloud radiative feedback only (green).
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discussion of the difference between the two is pre-
sented in section 6.

I used Rayleigh damping in this study because of
its simplicity so I can focus on the thermodynamic as-
pects. Preliminary results using CSRM-derived linear
response function for horizontal momentum, as done
in Kuang (2012), show that there are also an unstable
convectively coupled wave branch and an unstable sta-
tionary mode branch. Analyses of such models are more
complicated and are left to future work.

4. Model order reduction

I now reduce the dimension or order of the model
described in section 3 so that its dynamics can be un-
derstood more easily. Starting with Eq. (2), I first reduce
the order of vertical velocity. To do so, I consider x as

the input, dx/dt as the output, and w as the internal
state variable. This puts Eq. (2) in a form commonly
used in control theory for linear, time-invariant sys-
tems, and stable algorithms exist to optimally reduce
the order. I used the algorithm of Safonov and Chiang
(1989). The order-reduction procedure linearly trans-
forms then truncates the internal-state space to retain
states with the highest Hankel singular values, such that
for a given order that is retained, the error bound pro-
vided by Glover (1984) on the outputs for arbitrary
inputs at all frequencies is minimized. The order re-
duction is independent of the horizontal wavenumber
k, as multiplicative factors of C (and B) do not enter
the order reduction. We reduce the order of vertical
velocity to 2. This reduction has minimal effects on
the growth rates and phase speeds of the unstable modes
(not shown). On the other hand, when only one vertical

FIG. 5. (top) Temperature, (middle) specific humidity, and (bottom) pressure velocity structures of the unstable
propagating mode in Fig. 4 with full radiation and a wavelength of 2500 km with (left) the full model and (right) the
reduced sixth-order model.
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velocity mode is retained, the behavior of the system
can no longer be captured. These results indicate that two
vertical velocity modes are sufficient and also necessary to
capture the instability mechanisms.

After reducing the order of vertical velocity, I have
a system similar to Eq. (2) except with two modes for
the vertical velocity. I then consider the two vertical
velocity modes as the input, and their time derivative as
the output, and x (profiles of temperature and humidity)
as the internal state variables. Purely from the per-
spective of reproducing the full system’s behavior with
a model of the lowest order, it is optimal to reduce
temperature and humidity at all heights together.
However, each of the resulting modes from such a pro-
cedure will involve temperature and humidity at all
heights. For better interpretability, I shall perform
a modular model reduction with structural constraints so
that order reductions are done within predetermined
subspaces. Specifically, based on our physical under-
standing (or preconception) of the system and the
structures of the unstable modes of the full model shown
in Figs. 5 and 6, I define three separate subspaces: the

first consists of temperature and moisture in the bound-
ary layer (set to be below 800 hPa), and the other
two are the free-troposphere temperature and mois-
ture fields above the boundary layer, respectively.
State transformation is allowed only within each sub-
space but not across them. This is accomplished
by zeroing out the cross-subspace terms in the ob-
servability and controllability Gramians in the order-
reduction procedure (Keil and Gouze 2003). Again,
the order reduction is independent of the horizontal
wavenumber k.

In the spirit of a minimal complexity model, I set
the number of thermodynamic modes retained to 4,
the lowest order to reproduce the qualitative behavior
of the full model. In all cases that I have examined, the
four thermodynamic modes retained include two free-
troposphere temperature modes, one free-troposphere
moisture mode, and one boundary layer mode (exam-
ples of their vertical structures are shown later in Fig. 8).
This partition is not imposed a priori and is the result
of the order reduction; the structural constraint itself
does not specify the number of modes retained in each

FIG. 6. (left) Temperature, (middle) specific humidity, and (right) pressure velocity structures of the unstable stationary mode in Fig. 4
with full radiation and a wavelength of 15 000 km with the full model (solid) and with the reduced sixth-order model (dashed).
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of the three subspaces, which is free to vary between
0 and 4.

Together with the two vertical velocity modes
retained, I arrive at a sixth-order model. Growth rates
and phase speeds of this reduced model for cases with-
out radiation, with clear-sky radiation only, with cloud
radiation only, and with full radiation are shown in the
bottom panels of Fig. 4. Order reduction was done for
the different radiation cases separately.

Vertical structures of the unstable modes for this re-
duced model are compared with those of the full model
in Figs. 5 and 6. Having only one free-troposphere
moisture mode, the reduced system cannot capture
the evolving vertical structures of the free-troposphere

humidity as seen in the full model and in observations
(e.g., Kiladis et al. 2009). Allowing five modes for tem-
perature and moisture adds another free-troposphere
moisture mode and substantially improves this aspect
but at the cost of interpretability and is not pursued
in this paper. Aside from this difference, the vertical
structures of the unstable modes in the reduced and full
models show broad consistency.

One nonuniqueness in the above procedure is
whether to reduce the order of w or x first. Reducing x
first to four modes then reducing w to two modes pro-
duces mostly similar but slightly less accurate results.
This nonuniqueness represents a subjective aspect of the
procedure advocated here.

FIG. 8. Basis functions used in the reduced sixth-order model for T1, T2, q, hb, w1, and w2 (see legends) in terms of the (left) temperature,
(middle) specific humidity, and (right) negative pressure velocity.

FIG. 7. (right) Linear growth rates and (left) the phase speed of the unstable modes for the TOGA case when the full
model is used (black) and when the reduced sixth-order model is used (blue). There is no radiative feedback.
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The free-troposphere temperature modes and verti-
cal velocity modes are further rotated and scaled so
that the equations can be written as

d
dt

0

BBBBBBBBBB@

T1

T2

q

hb

w1

w2

1

CCCCCCCCCCA

5

0

BBBBBBBBBB@

M434

21 0

0 21

a1 a2

0 0

k2c2
1 0 0 0

0 k2c2
2 0 0

2« 0

0 2«

1

CCCCCCCCCCA

0

BBBBBBBBBB@

T1

T2

q

hb

w1

w2

1

CCCCCCCCCCA

,

(3)

where the variables T1, T2, q, hb, w1, and w2 denote
the amplitudes of the four retained temperature and
moisture modes and the two vertical velocity modes,
whose vertical structures (i.e., the basis functions) are
shown in Fig. 8 for the RCE case without radiative
feedbacks. The basis functions for the other cases (in-
cluding the TOGA case) are sufficiently similar that
they are not shown here for brevity. These basis func-
tions are remarkably similar to those used in the
previous simple models (e.g., Mapes 2000; Khouider and
Majda 2006; K08) and demonstrate that they are indeed

optimal basis functions for such simple models. The
other symbols in Eq. (3) are listed below: M434 is the
reduced linear response function, « is the Rayleigh
damping coefficient, c1 and c2 are the speeds of the first-
and second-mode dry gravity waves, and a1 and a2 rep-
resent vertical advection of free-troposphere moisture q
by w1 and w2. The rotation and scaling were done to
make the upper-right 2 3 2 elements of the matrix in
Eq. (3) an identity matrix and the lower-left 2 3 2
elements a diagonal matrix. Furthermore, the basis
functions of the temperature modes are scaled so that
they are positive in the lower troposphere and their peak
positive value is p /2. This, together with Eq. (3), fixes the
scales of the vertical velocity modes. How I set the scales
of the boundary layer and the free-troposphere moisture
basis functions is discussed in section 5. The rotation and
scaling have no effects on the eigenvalue calculation. In
Eq. (3), I have further set the effects of vertical advec-
tion on the boundary layer mode hb as well as the effect
of the boundary layer mode on the vertical velocity
modes to zero. These two simplifications may be justi-
fied respectively by the fact that vertical velocity tends
to be small near the surface and that the boundary layer
is relatively thin. In practice, effects of these simplifi-
cations on the stability calculation are found to be
secondary.

FIG. 9. (left) Temperature and (right) specific humidity structures of the slowest-decaying eigenvector for the full
linear response function M (red) and the reduced matrix M434 (blue).
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5. Separation of fast and slow manifolds

Let us first examine the role of the slowest-decaying
eigenvector of M434, whose structure is shown in
Fig. 9, along with that of the slowest-decaying eigen-
vector of the full linear response functions M. As
noted in Kuang (2010), the slowest-decaying eigen-
vector of M resembles the equilibrium profiles of
the Betts–Miller scheme. Reducing M to M434 clearly
distorts this structure. This distortion is due to the
structural constraints imposed during the modular
order reduction. If I remove the structural constraints
and reduce temperature and moisture at all levels
together, I can recover the full eigenvector structure
almost perfectly.

The decay rate of the slowest-decaying eigenvector
of M434 is 0.15 day21 for the RCE case. When it is set
to zero, the growth rate of the unstable stationary
mode increases considerably, while when it is set to
be very large (e.g., 104 day21), the stationary mode is
stable in all cases that I have examined (Fig. 10).
However, the unstable convectively coupled wave
modes are not strongly affected by such changes in

the slowest-decaying eigenvector. This suggests the
following framework to simplify the system to un-
derstand convectively coupled waves and the sta-
tionary mode separately.

Let us now split the phase space of the sixth-order
model expressed in Eq. (3) into two subspaces or
manifolds: a slow manifold spanned by the slowest-
decaying eigenvector of M434 and the vertical velocity
that it drives (through pressure gradient force and
continuity) and a fast manifold spanned by the re-
maining three eigenvectors and the vertical velocity
that they drive. The amplitude along the direction of
the slowest-decaying eigenvector of M434 (or the slow
mode) is denoted as es. The amplitudes of two vertical
velocity modes in the slow manifold are denoted as
ws

1 and ws
2, and those in the fast manifold are denoted

as wf
1 and wf

2. The total vertical velocities w1 and w2

are the sum of the respective fast and slow contribu-
tions. By construction, the two manifolds interact only
through effects of vertical advection on temperature and
humidity and not through convection. This gives the
following equations:

d
dt

0

BBBBBBBBBB@

es

ws
1

ws
2

Tf
1

Tf
2

qf

wf
1

wf
2
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CCCCCCCCCCA
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2l s as
1 as

2
j s

1k
2 2« 0

j s
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2 0 2«

0 0 0 as
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0 0 0 0 0
0 0 0 0 0

0 21 0
0 0 21
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1 af
2

0 0 0
0 0 0

* * * 21 0
* * * 0 21
* * * af

1 af
2

(cf
1k)

2
0 0 2« 0

0 (cf
2k)

2
0 0 2«

2

666666666664

3

777777777775

0

BBBBBBBBBB@

es

ws
1

ws
2

Tf
1

Tf
2

qf

wf
1

wf
2

1

CCCCCCCCCCA

, (4)

where l s is the decay rate of the slowest-decaying ei-
genvector of M434; as

1 and as
2 are the effect of vertical

advection by w1 and w2 on the slow mode amplitude es;
j s

1k
2 and j s

2k
2 are effects of the slow mode on w1 and w2;

Tf
1 , Tf

2 , and qf are the amplitudes of three linearly in-
dependent modes of the fast subspace, the choice of
which will be described shortly; af

1 and af
2 are the effect

of vertical advection by w1 and w2 on qf; and cf
1 and cf

2
are the dry wave speeds for the adjusted modes (see
end of section 5) but have nearly the same values as c1

and c2.
To simplify interpretation, the modes represented by

Tf
1 , Tf

2 , and qf have been chosen as the following:
0

BBB@

1
0
0

21

1

CCCA
,

0

BBB@

0
1
0
0

1

CCCA
,

0

BBB@

0
0
1

21

1

CCCA
, (5)

where the four elements of the columns are values for
T1, T2, q, and hb, respectively. The reason for this choice
is as follows.

Let us write the slowest-decaying left eigenvector
of M434 as

0

BBB@

hT1

hT2

hq
1

1

CCCA
. (6)

I have chosen the scales of the basis functions of q
and hb (shown in Fig. 8) in such a way that hT1 5 1 and
hq 5 1. Since hT2 is small in practice (20.09 for the RCE
case and 20.02 for the TOGA case), I set it to zero
for simplicity. From the principle of biorthogonality, the
slowest-decaying left eigenvector of M434 is orthogonal
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to the fast thermodynamic subspace so that, within the
fast manifold, I have

hb 5 2(Tf
1 1 qf ) . (7)

The reader can verify that the vectors in Eq. (5) reside in
the fast subspace.

Within the framework of the reduced-order model, the
sum of T1, q, and hb can be interpreted as the column-
integrated moist static energy (MSE), while T2 (a vertical
dipole) does not contribute to the column-integrated
MSE. Therefore Tf

1 , Tf
2 , and qf have the simple in-

terpretation as modes that vertically redistribute MSE
within the column with no contributions to the column-
integrated MSE, and Eq. (7) is simply a statement of
column MSE conservation.

Within the fast subspace, an implied value for the
boundary layer mode hb can be computed from Tf

1 , qf,
and Eq. (7). The choice of using hb as the implied vari-
able was made because effects of vertical advection on
hb are small. If I were to use q as the implied variable,
then vertical advection of free-tropospheric humidity
would have projections on all modes, complicating the
interpretation.

To keep the upper-right 2 3 2 elements the identity
matrix and the lower-left 2 3 2 elements a diagonal
matrix in the fast subspace portion of Eq. (4), I have
slightly readjusted the vertical profiles of T1, T2, w1, and
w2 (shown as dashed line in Fig. 8). The ability to split
the subspaces cleanly is worth the need for this small
readjustment.

With this separation, I can focus on the fast manifold
when studying the convectively coupled waves, where
the slow manifold is not essential, as described in the
next section. The fast and slow manifold separation can
also be used to better understand the stationary mode,
where the fast manifold may be considered as steady
state. This will be described in Part II.

6. Convectively coupled wave dynamics

To focus on the convectively coupled waves, I elimi-
nate the slow manifold and retain only the fast manifold,
which gives

d
dt

0

BBBBBB@
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1

Tf
2

qf

wf
1

wf
2

1
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2

1
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(8)

where M333 is the 3 3 3 submatrix shown as asterisks in
Eq. (4). We shall focus on the case without radiative
feedback because radiative feedback is not essential to
the convectively coupled waves (Fig. 4).

a. Recast into the form of previous simple models

A number of additional simplifications and manipu-
lations are possible so that the system can be cast in a
form similar to that of previous studies such as Mapes
(2000), Khouider and Majda (2006), and K08.

First, because the fastest-decaying eigenvector of
M333 has a large negative real eigenvalue (with values
of 217 day21 for RCE and 225 day21 for TOGA), the
thermodynamic state of the fast manifold, to a good
approximation, resides in a subspace spanned by the
remaining two eigenvectors so that the projection of the
thermodynamic state of the fast manifold to the di-
rection orthogonal to this subspace is small. This gives
an equation relating qf to Tf

1 and Tf
2:

qf 1 f1T
f
1 1 f2T

f
2 5 0 : (9)

Both f1 and f2 are positive and shown in Table 1. Note
that the direction orthogonal to this subspace is not the
direction of the fastest-decaying eigenvector, which is
not orthogonal to the other eigenvectors.

Since I am operating in the fast manifold, an equa-
tion for the boundary layer MSE anomaly hb is
implied given Eqs. (7) and (9), leading to the quasi-
equilibrium (QE) approximation used in K08 [Eq.
(14) therein], with Tf

1 and Tf
2 in the place of T1 and T2

in that paper:

dhb

dt
5 FK08

"

f K08 dTf
1

dt
1 (1 2 f K08)

dTf
2

dt

#

, (10)

where FK08 5 f1 1 f2 2 1 and fK08 5 (f1 2 1)/(f1 1 f2 2 1).
Time derivative is applied on both sides of Eq. (10), as
this is the form that is used to infer convective heating
needed to maintain QE in the presence of large-scale
forcings of Tf

1 and Tf
2 .

While the QE relationship can be equivalently
expressed in qf or in hb, the hb form [Eq. (10)] ties more
directly to the more familiar idea of a shallow QE
and provides a better connection to K08, where it is
used to provide a closure on convective heating. A
free-troposphere humidity anomaly qf is implied by
Eq. (7) given Tf

1 and hb. Deviations of the actual q
from this implied value would indicate the presence
of the slowest-decaying eigenvector, which, however,
makes only a small contribution to the convective
heating. The discussions above therefore indicate that
the QE relation used in K08 had assumed (implicitly)
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that the slowest-decaying eigenvector has been filtered
out or, equivalently, that contributions of the different
modes there to the column-integrated MSE had been
removed.

The convective tendencies of Tf
1 , Tf

2 , and qf, denoted
as J1, J2, and Jq, are given by

0

B@
J1
J2
Jq

1

CA 5 M333

0

B@
Tf

1

Tf
2

qf

1

CA, (11)

and convective heating for hb (denoted as Jhb) is implied,
again from Eq. (7) (i.e., column MSE conservation
within the fast subspace). Note that the QE relationship
[Eq. (9)] cannot be used to replace qf with Tf

1 and Tf
2

in Eq. (11) because M333 contains the fastest-decaying
eigenvector.

I now eliminate T1 from the first two rows of Eq. (11).
This gives us the following relationship:

J2 5 2g0J1 2 gqqf 2 gTTf
2 , (12)

which is a combination of Eqs. (20) and (34) of K08
and is a parameterization of the shape of convective
heating.

A positive g0 means that without Tf
2 and qf anomalies,

convective heating anomalies are top-heavy (note the
sign change compared to K08); a positive gq means that
an anomalously humid free troposphere (with a corre-
sponding drier and colder boundary layer so that the
net contribution to column-integrated MSE is zero)
corresponds to a more top-heavy convective heating
profile, and a positive gT simply represents the tendency
for convection to remove a Tf

2 anomaly, which is the
congestus damping in Mapes (2000). Note that qf instead
of q is used here; an anomalously humid free tropo-
sphere that is part of the slowest-decaying eigenvector
does not control the shape of convective heating effec-
tively. Also note that for a given qf or Tf

2 , if J1 is zero, a
Tf

1 anomaly is implied given the QE condition [Eq. (9)].
In other words, the effects of q and T2 on the shape of
convection (the gqqf and gqTf

2 terms) are the residuals
after the fastest-decaying eigenvector has been removed

TABLE 1. Calculated parameters for the RCE and TOGA cases. Parameters found to be key to the stability differences are in bold.
Rayleigh damping coefficient « is prescribed not calculated but is included here for completeness.

Symbol RCE TOGA Unit Description

af
1, af

2 1.0, 0.019 0.98, 0.0024 — Increase in qf per unit w1 and w2, Eq. (14)
c f

1 , c f
2 0.99, 0.42 1.0, 0.43 50 m s21 Dry speeds of the first and second modes

d1, d2 0.40, 0.98 0.68, 0.067 — Decrease in qf per unit J1 and J2, Eq. (13)
dq 1.1 0.95 day21 Decrease in qf per unit qf, Eq. (13)
f1, f2 1.9, 1.3 2.3, 1.4 — Coefficients relating qf to Tf

1 and Tf
2 in QE, Eq. (9)

g0 0.18 0.10 — Top-heaviness of convective heating anomalies when qf 5 Tf
2 5 0, Eq. (12)

gq, gT 0.47, 0.78 1.3, 3.4 day21 Dependence of the shape of convective heating on qf and Tf
2 , Eq. (12)

« 1 0.1 day21 Rayleigh damping coefficient

FIG. 10. (right) Linear growth rates and (left) the phase speed of the unstable modes for the reduced sixth-order
model for the RCE case with full radiative feedback, with unaltered eigenvalues (black), with the eigenvalue of the
slowest-decaying eigenvector set to zero (blue), and with the eigenvalue of the slowest-decaying eigenvector set
to 2104 day21 (red).
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by the QE condition (recalling, again, that the slowest-
decaying eigenvector of M434, which induces little con-
vective heating, was also eliminated).

One could choose to eliminate Tf
2 (or qf) from Eq.

(11) instead. The choice to eliminate Tf
1 is based on the fact

that this choice yields a form that is more consistent with
prior simple models and has a clearer physical interpretation.

Using the first two rows of Eq. (11), I can write Tf
1 and

Tf
2 in terms of J1, J2, and qf so that the equation for the

convective tendency of qf, Jq, becomes

Jq 5 2d1J1 2 d2J2 2 dqqf . (13)

Using Eq. (13) to rewrite Eq. (8) in terms of J1 and J2, I
have

dTf
1,2

dt
5 J1,2 2 wf

1,2 ,

dwf
1,2

dt
5 (cf

1,2k)
2
Tf

1,2 2 «wf
1,2 ,

dqf

dt
5 af

1w
f
1 1 af

2w
f
2 2 d1J1 2 d2J2 2 dqqf . (14)

The implied equation for hb, as we are in the fast sub-
space, is

dhb

dt
5 (1 2 af

1)w
f
1 2 af

2w
f
2 1 (d1 2 1)J1

1 d2J2 1 dqqf . (15)

Since af
1 is close to 1 and af

2 is close to zero [a conse-
quence of the slowest-decaying eigenvector of M434

being dominated by free-troposphere humidity varia-
tions (Fig. 9)], Eq. (15) may be simplified to

dhb

dt
5 2b1J1 2 b2J2 2 bqqf , (16)

with b1 5 1 2 d1, b2 5 2d2, and bq 5 2dq. The rela-
tionships between the b parameters and the d pa-
rameters are simply a statement of column MSE
conservation. The parameter b1 is greater than zero (i.e.,
d1 is less than 1) because it represents the efficiency with
which J1 moves MSE from the boundary layer to the free
troposphere.

Equations (14) and (16), together with the QE re-
lationship [Eq. (10)] and the parameterization of the
shape of convective heating [Eq. (12)], form a complete
system, which will be referred to as the simple con-
vectively coupled wave model. Note that only two
equations from Eq. (11) are explicitly used, and the third
is replaced by the QE relationship, which provides the

closure on J1. Also, Eq. (10) is a weaker version of the
QE relationship than the version without the time de-
rivative, and the latter can be used to eliminate a spu-
rious mode with zero growth rate and phase speed that
arises as a result.

The growth rates and the phase speeds of the unstable
modes from this system for the RCE and TOGA cases,
with parameters shown in Table 1, are given in Fig. 11.
The wave structures are similar to those in the right
column of Fig. 5 and are omitted.

This system is essentially that of K08, which builds
upon Mapes (2000) and Khouider and Majda (2006),
with additions from Kuang (2011). However, the pa-
rameter estimates and the model formulations here are
better justified. In particular, Eqs. (13) and (16) and the
parameter values listed in Table 1 make it clear that, all
else being equal, negative second-mode convective
heating (or stratiform heating) moistens the free tro-
posphere and reduces the boundary layer MSE (and
the opposite is true for congestus heating), consistent
with our expectations. The opposite behavior in K08 can
now be seen as caused by lumping the effect of free-
troposphere humidity into the effect of the second-mode
heating: in the default case of K08, g0 5 gT 5 0, so the qf

terms in Eqs. (13) and (16) can be lumped into the J2

terms, giving an effective d2 and b2, denoted as dK08
2

and bK08
2 . This lumping was noted in Kuang (2011),

where the effect of free-troposphere humidity was
separated out, but the parameter estimates there were
rather ad hoc.

b. Comparison with K08

K08 provided rough estimates of the parameters for
the TOGA case through regressions. Given the strong
correlations among different variables, this was ac-
knowledged as ‘‘educated guesses of plausible values.’’
We are now in a position to evaluate those estimates.
A comparison of parameters used in K08 and those
computed here is shown in Table 2. For this comparison,
the qf and hb variables are scaled so that the b1 and d1

parameters computed here are the same as those in the
K08 study. Table 2 shows that the parameter estimates
in K08 are largely consistent with those computed here.
The main differences are 1) in gT, which was neglected
in the default case of K08 and represents the congestus
damping effect identified by Mapes (2000); 2) in FK08,
which was underestimated by a factor of 2 in K08
but was found to not fundamentally affect the stability
(see Fig. 4 of K08); and 3) in gq, which controls the
strength of the moist stratiform instability and was un-
derestimated by ;20% in K08.

The above discussions thus place the simple model
analyzed in detail in K08 on a firmer footing. Readers
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are referred to Mapes (2000) and K08 for detailed
analysis of the model and discussions of the dynamics of
convectively coupled waves, where a direct stratiform
instability, which relies on a top-heavy shape of con-
vective heating anomalies in the absence of anomalies in
free-troposphere humidity and second-mode tempera-
ture, and a moisture-stratiform instability, which relies
on the effect of free-troposphere humidity on the shape
of convection, were identified.

c. Differences between RCE and TOGA

The more systematic estimates of the parameters now
also allow us to better understand the reason for the
stability differences between different cases.

Experimentations with the simple convectively cou-
pled wave model [Eqs. (10), (12), (14), and (16)] show
that the parameters highlighted in bold in Table 1
are responsible for the differing stability between the
RCE and TOGA cases. These are parameters that
control the shape of anomalous convective heating. The

parameter g0 is considerably larger in the RCE case.
This indicates that without qf and Tf

2 anomalies, con-
vective heating anomalies are more top-heavy in the
RCE case, which allows for stronger direct-stratiform
instability. Some indications of the top-heaviness of
the RCE case were seen in comparisons of Figs. 1 and 3
in terms of a stronger upper-troposphere extension of
the convective responses (section 2), but the differ-
ence can now be better quantified. The sensitivity of
the shape of convection to free-troposphere moisture
[gq in Eq. (12)] and the second-mode temperature
[gT in Eq. (12)] is also much stronger in the TOGA case
than in the RCE case. The stronger sensitivity to free-
troposphere moisture allows for a stronger moisture-
stratiform instability (K08), while the stronger sensitivity
to the second-mode temperature indicates a stronger
congestus damping (Mapes 2000). These two effects
oppose each other, with the net effect of reducing the
growth rates for the TOGA case, compared to RCE.
The stronger sensitivities are partially explained by the

FIG. 11. (right) Linear growth rates and (left) the phase speed of the unstable modes for the simple model of
convectively coupled waves described by Eqs. (10), (12), (14), and (16) for the RCE case with Rayleigh damping of
0.1 (black) and 1 day21 (blue) and for the TOGA case with Rayleigh damping of 0.1 day21 (red).

TABLE 2. Parameter values for the TOGA case used in K08 and calculated here (the values are scaled to facilitate comparison; see text for
more explanations).

Symbol K08 This study Unit Description

af
1, af

2 1.4, 0 1.4, 0.0 — Increase in qf per unit w1 and w2, Eq. (14)
b1, bK08

2 1, 2 1, 1.9 — Decrease in hb per unit J1 and J2, with the effect of qf lumped in
(see end of section 6a)

cf
1, cf

2 1, 0.5 1.0, 0.43 50 m s21 Dry speeds of the first and second modes
d1, dK08

2 1.1, 21 0.97, 20.93 — Decrease in qf per unit J1 and J2, with the effect of qf lumped in
(see end of section 6a)

g0 0 0.11 — Top-heaviness of convective heating anomalies when qf 5 Tf
2 5 0, Eq. (12)

gq, gT 0.7, 0 0.91, 3.5 day21 Dependence of the shape of convective heating on qf and Tf
2 , Eq. (12)

f K08, FK08 0.5, 4 0.48, 8.4 — Coefficients relating hb to Tf
1 and Tf

2 in QE, Eq. (10)
« 0.1 0.1 day21 Rayleigh damping coefficient
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stronger mean heating in the TOGA case, which is about
2.5 times stronger: if free-troposphere moisture or the
second-mode temperature affects a single updraft in the
same way, the TOGA case will have a stronger sensi-
tivity as it has more updrafts. However, the difference in
mean heating does not entirely explain the differing
sensitivities, indicating that convective updrafts in the
TOGA case are more sensitive to both free-troposphere
moisture and second-mode temperature perturbations
(with corresponding changes in the boundary layer MSE
to keep column-integrated MSE unchanged). The rea-
son for this is unclear and warrants further study.

Further experiments with the simple convectively
coupled wave model confirm the findings of Kuang
(2010) that in the TOGA case, zeroing gq almost en-
tirely removes the unstable convectively coupled waves,
implying that the moisture-stratiform instability is the
dominant mechanism, while in the RCE case, zeroing
g0 or gq significantly weakens but does not remove the
convectively coupled wave instability, which is only re-
moved when both g0 and gq are set to zero, implying that
both the direct-stratiform instability and the moisture-
stratiform instability contribute to the convectively
coupled wave instability in RCE.

There are additional notable parameter differences
between the two cases: in the TOGA case, the moist-
ening of the free troposphere by anomalous second-
mode heating J2, d2 in Eq. (13), is much weaker
compared to that in the RCE case, presumably because
the TOGA case has a moister free troposphere (e.g.,
Fig. 2 of Kuang 2010) and there is less evaporation of
rain. While the second-mode heating J2, when positive,
has been referred to as stratiform heating, it should
be recognized that the term ‘‘stratiform heating’’ is used
here in a loose sense and can be produced by greater
mass flux in the upper troposphere than in the lower
troposphere and does not necessarily require evapora-
tion of rain. Similarly, the reduction of boundary layer
MSE by anomalous second-mode heating [b2 5 2d2;
Eq. (16)] is also weaker in the TOGA case, as less
rain evaporation leads to weaker precipitation-driven
downdrafts. The large difference in the d2 (and b2)
values between the TOGA and RCE cases however
turns out to have only a secondary effect on the stability
of convectively coupled waves. This is because J2 can
also affect qf through the QE relationship [most clearly
seen through Eq. (9)], reducing the sensitivity of the
system to the d2 parameter.

7. Conclusions

In studies of moist convecting atmospheres, simple
models have long played a vital role in providing

insights. However, formulations and parameters in these
simple models’ treatment of convection are often based
on intuition and not systematically justified.

In this paper, I have presented a procedure to sys-
tematically construct simple models for the linear sta-
bility of moist convecting atmospheres, along with their
parameters, from a more comprehensive model, such as
a CSRM.

In this study, I have focused on the prototype problem
of convection coupling with large-scale 2D linear grav-
ity waves. For a given reference state, I start by con-
structing linear response functions of the CSRM. These
linear response functions, when coupled with large-scale
linear wave dynamics, provide a suitable model for this
problem. For an RCE reference state with full radia-
tive feedback, this linear-response-function-based model
gives two branches of unstable modes: a propagating
convectively coupled wave branch and a stationary
branch. The stationary branch is unstable only when ra-
diative feedback is included, while the convectively cou-
pled wave branch is less affected by radiative feedback.

I then used a modular order-reduction procedure
from control theory to reduce the linear-response-
function-based model to a system of six ODEs, which
are found to capture the essential features of the full
model. The basis functions obtained from the order-
reduction procedure match those used in previous
simple models remarkably well, thus more formally
justifying their use.

The reduced-order system is then split into a slow
and a fast manifold, and the former is found essential for
the stationary mode but not for the convectively coupled
waves. This finding indicates that the essential con-
vectively coupled wave dynamics are contained within
the fast manifold.

Through a further QE assumption based on the
fastest-decaying eigenvector, the fast manifold of the
reduced-order model is transformed into a form similar
to that of prior simple models of convectively coupled
waves, whose parameters are thereby computed from
the CSRM. The results show that the formulation used
in K08 lumped the effect of free-troposphere moisture
on convective moistening and boundary layer MSE
into the effect of second-mode convective heating. The
procedure here also made clear that, in previous simple
models of convectively coupled waves, variations in the
column-integrated MSE have been implicitly filtered
out. Comparisons of the formulations and parameters
place the previous simple models and the insights de-
rived from them on a firmer footing.

With better quantifications of the parameters, we can
also better understand the stability difference between
different reference states. In particular, the different
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stability of convectively coupled waves for the RCE and
TOGA cases found in Kuang (2010) can now be at-
tributed to their differences in the control of the shape of
convective heating.

In this paper, I have focused on convectively coupled
waves. In Part II, I shall examine the stationary mode
and the effect of radiative feedback by considering the
interaction between the slow and the fast manifolds,
with the fast manifold set to a steady state, which rep-
resents an extension of the moisture mode and weak
temperature gradient approach currently used in such
problems.
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