Mid-Level Vorticity, Moisture, and Gross Moist Stability in the Tropical Atmosphere

David Raymond, Saška Gjorgjievska, Sharon Sessions, Carlos López, Željka Fuchs

Physics Department and Geophysical Research Center
New Mexico Tech

Supported by the National Science Foundation and the Office of Naval Research
Special thanks to collaborators:

▶ Saška Gjorgjievská
▶ Sharon Sessions
▶ Carlos López
▶ Željka Fuchs
Showers and rains:

- Ramage (1971) divides tropical precipitation into two regimes:
 - Showers: Fine weather with relatively dry conditions, high CAPE, low shear;
 - Rains: Cloudy weather with moist conditions, low CAPE, higher shear;
 - The rains regime produces more average rainfall;
 - The showers regime produces higher peak rainfall.

- Williams et al. (1992) make similar distinction and correlate higher lightning rates with the showers regime.

- Is low CAPE and high moisture a cause or an effect of convection with higher average rainfall?
In situ measurements:

- TPARC/TCS08 (2008) project in western Pacific
 - ELDORA radar (NRL P-3)
 - Dropsondes from 10 km (Kessler C-130Js)
- PREDICT/GRIP/IFEX (2010) project in western Atlantic and Caribbean
 - Dropsondes from 12-13 km (NSF/NCAR G-V, NASA DC-8)
Two examples; Hagupit2 and Nuri2:

3-5 km absolute vorticity (ks$^{-1}$) and relative wind (20 m/s/deg)
Thermodynamic Effect of Vortices

West Pacific wave
Reed and Recker (1971)

Developing disturbance
warm
PV anomaly
cool

PV anomaly
Hagupit 2 dynamics:

![Graphs showing Hagupit 2 dynamics](image-url)
Nuri2 profiles:

- Circulation (km²/s)
- Height (km)
- Total and planetary
- Entropy (J/K/kg)
- Mass flux (10⁹ kg/s)
Thermodynamics:

Instability index:

\[I = s^*_lo - s^*_hi \]

\(s^*_lo \): average \(s^* \) over [1, 3] km
\(s^*_hi \): average \(s^* \) over [5, 7] km

Saturation fraction:

\[F = \frac{\int r dp}{\int r_S dp} \approx \frac{\int (s - s_d) dp}{\int (s^* - s_d) dp} \]

\(r \): mixing ratio
\(r_S \): saturation mixing ratio
\(s_d \): dry entropy
\(s \): moist entropy
\(s^* \): saturated moist entropy
Instability index:

Mean Soundings

- Nuri2
- Hagupit2

I-H2
I-N2
I = instability index

Height (km)

Moist entropy (J/K/kg)
Mean Nuri2 - Hagupit2 temperatures:

Temperature difference: nuri2 - hagupit2

- z vs dtemp
- z vs dtvirt
Differences quantified:

<table>
<thead>
<tr>
<th></th>
<th>Nuri2</th>
<th>Hagupit2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instability index</td>
<td>11 J/ K/ kg</td>
<td>27 J/ K/ kg</td>
</tr>
<tr>
<td>Saturation fraction</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>Normalized GMS</td>
<td>-0.01</td>
<td>0.64</td>
</tr>
<tr>
<td>Mass flux</td>
<td>bottom-heavy</td>
<td>top-heavy</td>
</tr>
<tr>
<td>Vorticity maximum</td>
<td>middle levels</td>
<td>surface (weak)</td>
</tr>
<tr>
<td>Fate</td>
<td>rapid devel</td>
<td>delayed devel</td>
</tr>
</tbody>
</table>
TCS08/PREDICT: Instability index vs mid-level vorticity

![Graph showing the relationship between mid-level absolute vorticity and instability index. Points are scattered across the graph, with stars indicating specific data points for N2 and H2.](image-url)
TCS08/PREDICT: Saturation fraction vs instability index
Normalized Gross Moist Stability (NGMS)

\[\text{NGMS} = -\left(\frac{T_R}{L} \right) \left(\frac{\nabla_h \cdot (\rho \mathbf{v}_h s)}{\nabla_h \cdot (\rho \mathbf{v}_h r)} + \rho \mathbf{v}_z s \bigg|_{\text{top}} \right) \]

- \([\chi] \): Horizontal average and vertical integral of \(\chi\).
- \(\overline{\chi} \bigg|_{\text{top}} \): Horizontal average of \(\chi\) at domain top.
- \(T_R\): Constant reference temperature; \(L\): Latent heat constant; \(\rho\): Density; \(s\): Specific moist entropy; \(r\): Water vapor mixing ratio; \(\mathbf{v}_h\): System-relative horizontal wind; \(\mathbf{v}_z\): Vertical wind.
NGMS and the mass flux profile:

- High NGMS: Top-heavy
- Low NGMS: Bottom-heavy

Diagram showing the relationship between height and mass flux with different NGMS conditions.
TCS08/PREDICT: NGMS vs mid-level vorticity
TCS08/PREDICT: NGMS vs instability index
TCS08/PREDICT: NGMS vs saturation fraction
Rain and mass flux profiles from WTG cloud simulations:

(Raymond, D. J. and S. L. Sessions, 2007)
Rain and Mass Flux Profiles (cont...)

A

- unperturbed
- $\delta \theta = \pm 0.5$ K
- $\delta \theta = \pm 1.0$ K
- $\delta \theta = \pm 2.0$ K

$\nu_y = 7$ m/s

B

- unperturbed
- $\delta r = 0.25$ g/kg
- $\delta r = 0.5$ g/kg
- $\delta r = 1.0$ g/kg

$\nu_y = 7$ m/s
Chain of causality

Increased mid-level vorticity

Decreased instability index

Convective dynamics

Horizontal and vertical shear

Increased saturation fraction

Decreased NGMS

Increased rain and energy transfer to the large scale
References

