Onset Weight Effects in Stress/Accent Systems Exhibiting Variation
UD Conference on Stress and Accent

Kevin Ryan
Harvard University

Saturday, December 1, 2012
Can onsets contribute to syllable weight? (cf. e.g. Gordon 2005, Topintzi 2010)
Can onsets contribute to syllable weight? (cf. e.g. Gordon 2005, Topintzi 2010)

This talk: stress systems exhibiting lexical variation
Can onsets contribute to syllable weight? (cf. e.g. Gordon 2005, Topintzi 2010)

This talk: stress systems exhibiting lexical variation

Onsets consistently and productively affect stress placement
Can onsets contribute to syllable weight? (cf. e.g. Gordon 2005, Topintzi 2010)
This talk: stress systems exhibiting lexical variation
Onsets consistently and productively affect stress placement
P-center theory of weight
1 Overview

2 English
 - Lexicon
 - Productivity
 - Analogy

3 Russian

4 Etc.

5 Analysis
English primary stress

- Predictable, but not fully deterministic
 - própane vs. cocáine
English primary stress

- Predictable, but not fully deterministic
 - própane vs. cocáine
 - ptomaine ("compound associated with putrefaction")
English primary stress

- Predictable, but not fully deterministic
 - própane vs. cocáine
 - ptomaine (“compound associated with putrefaction”)
 - Mélanie vs. Tennessée
English primary stress

- Predictable, but not fully deterministic
 - própane vs. cocáine
 - ptomaine ("compound associated with putrefaction")
 - Mélanie vs. Tennessee

- Generative accounts generally ignore onsets
 (though cf. Nanni 1977 on Eng. adjs. in -ative; also Kelly 2004, infra)
English stress: lexicon

- Simplex disyllables in CELEX (Baayen et al. 1993)
- Longer onset \(\Rightarrow\) greater incidence of primary stress (with Kelly 2004)

- 95% confidence intervals using Wilson scores (Wilson 1927, Newcombe 2000)
- * = sig. by Fisher’s exact test two-tailed with Holm correction for multiple comparisons
Consistent across independent subdivisions of the lexicon

- **noun**
- **adjective**
- **verb**

- **low frequency**
- **middle frequency**
- **high frequency**

- **V rime**
- **VC rime**
- **VV rime**

% initially stressed vs. consonants in initial onset
• Rimes aren’t covertly driving the effect (see last row)

• Even holding both rimes at their modes (_˘.C˘VC), \(\emptyset < C \) and \(C < CC \) persist (both Tukey’s HSD \(p < .05; n = 1,399 \))
Medial onsets

- Medial onset structure (unconsidered by Kelly 2004) behaves similarly
- Both contrasts persist when initial onset is held at C (Tukey’s $p < .0001$)
Logistic model

- **Data**

 Simplex English disyllables from CELEX

- **Dependent variable**

 Initial (1) or final (0) primary stress

- **Predictors**

 - Initial onset size (0 to 3)
 - Final onset size (1 to 3)
 - Initial coda size (0 to 2)
 - Final coda size (0 to 3)
 - Initial vowel identity (23 levels)
 - Final vowel identity (24 levels)
 - CELEX part of speech (9 levels)
 - log (frequency+1)
Logistic model: results

- **All eight main effects significant** \((p < .0001 \text{ in an ANOVA}) \)

- **Initial onset**
 - \(\emptyset < C \) \(\text{(Tukey’s} \ p < .0001) \)
 - \(C < CC \) \(\text{(Tukey’s} \ p < .0001) \)
 - \(CC < CCC \) \(\text{(Tukey’s} \ p < .05) \)

- **Medial onset**
 - \(C >* CC \) \(\text{(Tukey’s} \ p < .0001) \)
 - \(CC >* CCC \) \(\text{(Tukey’s} \ p < .0001) \)

 *Since initial stress is being predicted, the coefficients are reversed

- **Even with fully specified rimes as crossed random factors, all but one of the above contrasts persists**
Summary: English lexicon

- Stress propensity \sim onset size broadly supported
 - Robust across various divisions of the lexicon
 - Unconfounded by rime structure
 - Found independently in initial & medial syllables
 - Found independently in disyllables & trisyllables (not shown here)

- Monotonic
 - $\emptyset < C$ and $C < CC$ initially
 - $C < CC$ and $CC < CCC$ medially
Productivity: previous work

- Is *brontoon* more likely to be initially stressed than *bontoon*?

- Kelly (2004)
 - Orthographic stimuli pronounced aloud, stresses logged

- Ryan (2011)
 - Self-reported judgments of orthographic stimuli
 - Screening based on performance on real words

- Both: initial C < CC in disyllables
Perception experiment

- Auditory wug-test

- Addresses possible problems with orthographic stimuli
 (e.g. “visual syllable” confound)
Stimuli

- **Critical items:** 8 wugs in 3 nested conditions (crossed by participant)

<table>
<thead>
<tr>
<th></th>
<th>Ø-</th>
<th>C-</th>
<th>CC-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ummorm</td>
<td>lummorm</td>
<td>flummorm</td>
</tr>
<tr>
<td>2</td>
<td>izzoof</td>
<td>rizzoof</td>
<td>grizzoof</td>
</tr>
<tr>
<td>3</td>
<td>irgeen</td>
<td>lirgeen</td>
<td>flirgeen</td>
</tr>
<tr>
<td>4</td>
<td>illawm</td>
<td>willawm</td>
<td>swillawm</td>
</tr>
<tr>
<td>5</td>
<td>izzool</td>
<td>bizzool</td>
<td>brizzool</td>
</tr>
<tr>
<td>6</td>
<td>ordoot</td>
<td>mordoot</td>
<td>smordoot</td>
</tr>
<tr>
<td>7</td>
<td>evvain</td>
<td>devvain</td>
<td>drevvain</td>
</tr>
<tr>
<td>8</td>
<td>istrow</td>
<td>listrow</td>
<td>slistrow</td>
</tr>
</tbody>
</table>

- **Fillers:** 8 real disyllables with C onsets, 50% trochaic

- **Critical items and fillers randomized**
 (except first two items fillers and then no two adjacent fillers)
Stimuli

- All items recorded and processed in Praat (Boersma and Weenink 2011)
 - Pitch → 150 Hz
 - Intensity → 65 dB
 - Onsets spliced onto same completion across conditions
 (a fixed portion of the vowel was also replaced for natural-sounding transitions)

 istrow ⏺; listrow ⏺; slistrow ⏺
Stimuli

- All items recorded and processed in Praat (Boersma and Weenink 2011)
 - Pitch → 150 Hz
 - Intensity → 65 dB
 - Onsets spliced onto same completion across conditions
 (a fixed portion of the vowel was also replaced for natural-sounding transitions)

 istrow ♩; listrow ♩; slistrow ♩

- Amazon’s Mechanical Turk
 - Analyzed iff US location, native speaker, and 7+/8 on fillers
 38 usable participants (from 166)
Results

- \emptyset - 43% trochaic, C - 63%, CC - 79%

 (ANOVA $F(2) = 9.8, p < .0001$)

- $\emptyset < C$ and $\emptyset < CC$ both significant in a mixed model

 (Tukey’s $p < .05$)
Analogy?

iambic neighbors (total mass=53)

trochaic neighbors (total mass=34)

- Neighbors of pseudoword *plizzooft*
• **Analogical Modeling** (e.g. Skousen 1989, 1992, 2009)

• **TiMBL** (Daelemans et al. 2010) shows best of 72 tested parameterizations
 (cf. Hayes et al. 2009:855) <overlap, information gain, 7, inverse linear>

• Both significantly underperform superset model with onset factor

 \[F(1) = 17.5, p < .001 \]
Russian stress/accent

- Like English, not fully predictable in roots
 - 100+ minimal pairs (e.g. múka ‘torment’ vs. muká ‘flour’) (Cubberley 2002)
Russian stress/accent

- Like English, not fully predictable in roots
 - 100+ minimal pairs (e.g. múka ‘torment’ vs. muká ‘flour’) (Cubberley 2002)
- But non-deterministic ≠ unpredictable (e.g. Zuraw 2010)
Russian stress/accent

- Like English, not fully predictable in roots
 - 100+ minimal pairs (e.g. м́ука ‘torment’ vs. мукá ‘flour’) (Cubberley 2002)

- But non-deterministic ≠ unpredictable (e.g. Zuraw 2010)

- Corpus
 - 32,616-lemma frequency list (Sharoff 2002)
 - Excluded monosyllables & compounds
 - Accents supplied from online dictionary (starling.rinet.ru)
 - Excluded items with mobile stress
 - Result: 11,757 nouns; 5,258 adjectives; 7,399 verbs
Russian initial onset size & accent

- In trisyllabic lemmata (modal word length):

![Graph showing the percentage of initially stressed consonants in the initial onset over different counts of consonants.]
<table>
<thead>
<tr>
<th></th>
<th>noun</th>
<th>adjective</th>
<th>verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>% initially stressed</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>low frequency</th>
<th>middle frequency</th>
<th>high frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>% initially stressed</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C interlude</th>
<th>CC interlude</th>
<th>CCC interlude</th>
</tr>
</thead>
<tbody>
<tr>
<td>% initially stressed</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

consonants in initial onset

0 1 2 3+
Russian: logistic regression

- Model set up as for English

- Trisyllables (all Tukey’s $p < .0001$)
 - $\emptyset < C$
 - $C < CC$
 - $CC < CCC+$

- Disyllables (plot not shown) (both Tukey’s $p < .0001$)
 - $\emptyset < C$
 - $C < CC$

- As in English, onset structure & stress propensity covary significantly & systematically
Hayes (2012, handout):

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Penult/Antep in corpus</th>
<th>Weight6</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRESS PENULT WHEN ITS VOWEL IS LOW.</td>
<td>7335/699</td>
<td>3.16</td>
</tr>
<tr>
<td>STRESS PENULT WHEN IT HAS A TRIPLE ONSET (CCC)</td>
<td>18/0</td>
<td>0.92</td>
</tr>
<tr>
<td>STRESS PENULT WHEN IT HAS (AT LEAST) A DOUBLE ONSET (CC)</td>
<td>2596/178</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Convergent evidence from poetic meter, e.g. Sanskrit

- All else equal, syllables with longer onsets are more skewed towards strong positions
- Why are longer onsets more stress-attracting?
- English again (disyllabic nouns & adjectives only):
Proposal: P-center theory of weight

- The domain over which weight percept is assessed begins not with the rime, but with the perceptual center of the syllable (on p-centers, e.g. Patel et al. 1999, Villing et al. 2003, Soraghan et al. 2005, Barbosa et al. 2005, Tilsen 2006, Port 2007, Wright 2008, Villing 2010)

- Near beginning of rime, but perturbed by onset structure
First speaker in Harvard-Haskins Database of Regularly Timed Speech (Patel et al. 1999)
As onset size increases, p-centers increasingly anticipate the rime, but only by a small fraction of the duration of the onset
Proposal: P-center theory of weight

- Onset/coda asymmetry
 - The p-center parses only a fraction of the onset into the domain (while rime segments are parsed in their entirety)
Proposal: P-center theory of weight

- Onset/coda asymmetry
 - The p-center parses only a fraction of the onset into the domain (while rime segments are parsed in their entirety)

- P-centers predict each onset C to contribute avg. 35% as much as each coda C to the weight percept in English
 - English stress: onset coefficient is 46% of coda coefficient
Proposal: P-center theory of weight

- Stress & meter are rhythmic phenomena

- Timing/isochrony studies (e.g. op. cit.) suggest linguistic rhythm is not anchored to (sub)syllabic structure per se
Proposal: P-center theory of weight

- Stress & meter are rhythmic phenomena

- Timing/isochrony studies (e.g. op. cit.) suggest linguistic rhythm is not anchored to (sub)syllabic structure *per se*

- Auditory recovery (Gordon 2005) unlikely to be the whole story
 - Ceiling ~ 40 ms (Delgutte 1982:135), whereas events well outside of this window affect stress attraction (e.g. slide 27)
 - Null onset problem (Gordon 2005)
 - Geminate onset problem (Topintzi 2010:243)
Conclusion

- Onsets contribute to syllable weight
 - Their influence is clearest in, but not exclusive to, non-deterministic systems
Conclusion

- Onsets contribute to syllable weight
 - Their influence is clearest in, but not exclusive to, non-deterministic systems

- But they contribute *less* than codas
 - Less likely to be invoked by categorical criteria
 - Smaller coefficient in non-deterministic systems
Onsets contribute to syllable weight

- Their influence is clearest in, but not exclusive to, non-deterministic systems

But they contribute *less* than codas

- Less likely to be invoked by categorical criteria
- Smaller coefficient in non-deterministic systems

The p-center hypothesis can explain this asymmetry

- Onsets parsed only partially into weight domain
- Assuming categorization optimizes both perceptual dispersion & formal simplicity *(Gordon 2002)*, criteria are expected to favor codas
Acknowledgments

Bruce Hayes, Donca Steriade, Kie Zuraw
References I

