STAT 353: Lecture 8

• The moves are very “local”
• Tend to be trapped in a local mode.

\[\pi(x) \propto e^{-\frac{1}{2} \left(x_1^2 + x_2^2 \right)} + 2e^{-\frac{1}{2} \left(x_1^2 + x_2^2 \right)} \]

Multiple-Try Metropolis

Current is at \(x \)

• Draw \(y_1, \ldots, y_k \) from the proposal \(T(x, y) \).
• Select \(Y = y_j \) with probability \(\propto \pi(y_j) T(y_j, x) \).
• Draw \(x'_1, \ldots, x'_{k-1} \) from \(T(Y, x) \). Let \(x'_k = x \).
• Accept the proposed \(y_j \) with probability

\[p = \min \left\{ 1, \frac{\pi(y_j) T(y_j, x) + \cdots + \pi(y_j) T(y_j, x)}{\pi(x'_1) T(x'_1, y_j) + \cdots + \pi(x'_k) T(x'_k, y_j)} \right\} \]

Let's prove the case when \(k=2 \) and \(T(x, y) = T(y, x) \).

Illustrating the Gibbs Sampler

• Purpose: Draw from a Joint Distribution \(x = (x_1, \ldots, x_n) \); target \(\pi(x) \)
• Method: Iterative Conditional Sampling

\[\forall i, \text{ Draw } x_i \sim \pi(x_i|x_{-i}) \]

Illustrating the Gibbs Sampler

• Suppose the target distribution is:

\[(X, Y) \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right) \]

• Gibbs sampler:

\[[X|Y = y] \sim \mathcal{N} (\rho y, 1 - \rho^2) \]

\[[Y|X = x] \sim \mathcal{N} (\rho x, 1 - \rho^2) \]

Start from, say, \((X, Y) = (10, 10)\), we can take a look at the trajectories. We took \(\rho = 0.6 \).
Example: A joint distribution of continuous and discrete r.v.s

- Target distribution:
 \[f(x, y) \propto \binom{n}{y} y^{x+y-1}(1-y)^{n-x+y} \]
 \[x = 0, 1, \ldots, n; \quad 0 \leq y \leq 1 \]

- How to draw samples?
 - \([x \mid y] \sim \text{Binom} (n, y)\)
 - \([y \mid x] \sim \text{Beta} (x+\alpha, n-x+\beta)\)

- For illustration, we took \(\alpha = 0.5, \beta = 0.5; \) and \(n=10\)

More Generally

\[\int p_x(x)p_{y\mid x}(y\mid x)dx = p_y(y) \]

\[\int p_x(x)p_{y\mid x}(y\mid x)p_{x'\mid y}(x'\mid y)dy = p_x(x') \]
Missing data problem

- **Complete-Data Model:** $[x|\theta] - f(x|\theta)$
 - Example 1: x -- multivariate normal, θ -- covariance;
 - Example 2: x -- multinomial, θ -- unknown frequency.
 - Example 3: x -- Markov chain, θ -- transition probabilities.
- **Sometimes** only part of x, say y, can be observed.
 Write the decomposition as $x=(y,z)$.
- **Observed-Data Model:**
 - Question: How to find the MLE?
 - Or posterior distribution of θ?

\[
\begin{align*}
 p(y|x,\theta) &= \int f(y,z|x,\theta) dz \\
 \text{This is usually a difficult integration.}
\end{align*}
\]

Missing data problem is not “a problem”!

Many problems can be turned into missing data problems

- **Hierarchical Model/ Random Effects Models**

\[
\begin{align*}
 y_j &\sim \mathcal{N}(0, \alpha) \\
 \alpha &\sim \mathcal{N}(0, \sigma^2)
\end{align*}
\]

- $\theta_1, \ldots, \theta_n$ are iid $\mathcal{N}(\alpha, \sigma^2)$
- Can’t observe the random effects of the indicators!!

- **Latent Class/Mixture Models**

Example: $[y_i | I_i=1] \sim \mathcal{N}(\theta_1, \sigma^2)$
and $[y_i | I_i=0] \sim \mathcal{N}(\theta_0, \sigma^2)$

The Algorithm

- **Objective:** find the most “common” pattern.

Example: Sequence Alignment and motif finding

| a_1 | A motif site |
| \vdots | a_k |
| **width** n |
| **length** n_k |

Alignment variable: $A = \{a_1, a_2, \ldots, a_k\}$

Objective: find the most “common” pattern.

Statistical Model:
- Every non-site positions follows a common multinomial with $p_0 = (p_{0,1}, \ldots, p_{0,20})$
- Every position i in the motif element follows probability distribution $p_i = (p_{i,1}, \ldots, p_{i,20})$

The Algorithm

- Initialized by choosing random starting positions $a_1^{(0)}, a_2^{(0)}, \ldots, a_K^{(0)}$
- Iterate the following steps many times:
 - Randomly or systematically choose a sequence, say, sequence k, to exclude
 - Carry out the predictive-updating step to update a_k
- Stop when not much changes observed, or some criterion met
Why does the Gibbs sampler work?

- It is a Markov Chain!

If \(X^{(0)} = x_0 \), then distribution of \(X^{(t)} \) is

\[
\mathcal{N}(\rho^{2t}x_0, 1 - \rho^{4t})
\]

which "converges" to \(\mathcal{N}(0,1) \) as \(t \to \infty \).

Joint distribution of \((X^{(t)}, Y^{(t)}) \)?

\[
\begin{pmatrix}
\rho^{2t}x_0 \\
1 - \rho^{2t}
\end{pmatrix}
\begin{pmatrix}
\rho^{2t}y_0 \\
1 - \rho^{2t}
\end{pmatrix}
\]

Theory About Data Augmentation

- A graphical view and some basic identities

\[
\begin{align*}
E\{h(\theta^{(m)}) \mid \theta^{(n-1)}\} &= E\{E[h(\theta^{(m)}) \mid \theta^{(n-1)}] \mid z^{(n)}\} \\
&= E\{E[h(\theta) \mid z] \}
\end{align*}
\]

\[
\begin{align*}
\text{cov}[h(\theta^{(m)}) \mid \theta^{(n-1)}] &= \text{var}[E[h(\theta) \mid z]] \\
\text{cov}[h(\theta^{(m)}) \mid \theta^{(n-1)}] &= \text{var}[E[\cdot \mid E[h(\theta) \mid \theta]] \mid z^{(n)}]
\end{align*}
\]

(Literally, these are the main results of my thesis)

Comparing schemes and estimators

- Schemes: grouping and collapsing
 - (1) \([x | y] \) and \([y | x] \)
 - (2) \([x; y, z] \) and \([y, z | x] \)
 - (3) \([x; y, z], [y; x, z], [z; x, y] \)

- Estimators:

\[
\begin{align*}
\hat{\theta} &= \frac{1}{m} \{h(\theta^{(0)}) \ldots h(\theta^{(m)})\} \quad \text{histogram} \\
\hat{\theta} &= \frac{1}{m} \{h(\theta) \mid Z^{(0)} \ldots h(\theta) \mid Z^{(m)}\} \quad \text{mixture}
\end{align*}
\]