• Suppose $X = (x_1, \ldots, x_d)$; of interest is
 $\pi(X) = \pi(x_1) \pi(x_2 | x_1) \cdots \pi(x_d | x_1, \ldots, x_{d-1})$
• Similarly, the trial density can also be decomposed
 $q(X) = q(x_1) q(x_2 | x_1) \cdots q(x_d | x_1, \ldots, x_{d-1})$
 $w(X) = \pi(X) q(x_1 | x_2) q(x_2 | x_3) \cdots q(x_d | x_1, \ldots, x_{d-1})$
 – The weight can be computed sequentially
 – at any stage we may want to reject a partial sample because the
 “temporary” weight is already very small.
 – In practice, we create a sequence of approximations, $\pi(x_1), \pi(x_2 | x_1), \ldots$, to guide the IS at each stage.
 – See (Kong, Liu, Wong, 1994; Liu, Chen, Wong, 1998)

How to generate a “good” table?

• Let a $m \times n$ table be represented by
 $\Gamma = (X_1, \ldots, X_n)$
• Sequential importance sampling for tables:
 $q(\Gamma) = q(X_1) \times q(X_2 | X_1) \times \cdots \times q(X_n | X_1, \ldots, X_{n-1})$
 – Each X_i is a m-dim vector of c_i 1’s and $m-c_i$ 0’s
 – And we also have row-sum information
Details for sampling each column

- Focus on X_1 (since it is a recursive procedure). We can write it as $X_1 = (x_1, \ldots, x_n)^T$.
 - We prefer its jth position to have a “1” if r_j is big.
 - Poisson-Binomial distribution: if x_i=1 if $p_i(1-x_i)$, then $S=Z_1+\ldots+Z_m$ has a P-B distribution.
 - Distribution of X_j conditional on c_1 and r_1, \ldots, r_m is just the above conditional distribution with p_i replaced by r_i/n.
 - More flexible weights: $w_i = (r_i/(n-r_i))^g$.

- Constraint on column sums and row sums.

Weighted Sampling procedure

- In Chen, Dempster and Liu (1994, Biometrika)
 - Compute the normalizing constant $O(m^c_1)$
 - Sampling can be done sequentially and takes $O(m)$

For the finch data

<table>
<thead>
<tr>
<th>number of samples for each estimate</th>
<th>mean \tilde{n} of n_m</th>
<th>time to get 100 estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.7×10^8</td>
<td>10 seconds</td>
</tr>
<tr>
<td>100</td>
<td>0.65×10^8</td>
<td>1 min 20 seconds</td>
</tr>
<tr>
<td>1,000</td>
<td>0.72×10^8</td>
<td>12 min</td>
</tr>
<tr>
<td>10,000</td>
<td>0.713×10^8</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

Table 1: Estimations for finch data

CV$^2 = 1.3$ for $g=1$, optimal $g=1.11$, with CV$^2 = 0.7$

Test of co-inhabitation: $S^2 = \frac{1}{m(m-1)} \sum_{i\neq j} h_{ij}$

Some special cases

- If all $a_{ij} = 1$, then S_d is the collection of all permutations.
- If all $a_{ij} = 0$ and $a_{ii} = 1$ for $i \neq j$, then S_d is the set of all permutations with no “fixed point.”
- A bipartite graph with $2n$ vertices, $a_{ij} = 1$ if \exists an edge between x_i and y_j.
 - S_d is the set of perfect matches.
- In statistical physics, a “dimer covering” problem can be stated as that of computing permanent.
Approximating Permanents

- Recall \(S_\pi = \text{perm}(A) = \sum_{\pi \in \pi} \prod_{i=1}^{n} a_{\pi(i)} \)

- For any permutation \(\pi \), define its “value” \(a(\pi) = \prod_{i=1}^{n} a_{\pi(i)} \) either one or zero.

- We want to “choose” permutations so that their “values” tend not to be zero.

- We sample \(\pi(1), \pi(2), \ldots, \pi(n) \) sequentially with

- After sampling \(\pi(1) = j \), we cross out the 1st column and the \(j \)-th row and move to the second column

- If at some step we are forced to take zero’s, we stop and give that sample a zero weight.

The State-Space Model (Hidden Markov Model)

- The State-Space Model

 \[
 \begin{align*}
 \text{Obs exp.} & \quad y_t | x_t, \phi = f_t(x_t, \phi) \\
 \text{State exp.} & \quad x_t | x_{t-1} = g_t(x_t, x_{t-1}, \theta)
 \end{align*}
 \]

- Only the \(y_t \) are observable!!!

Dynamic (Nonlinear) Models

- System: \(X_N = (x_{10}, \ldots, x_N) \)

- Of interest: estimating the \(x_t \) \textit{on-line}

A Simple Example

- Consider

 \[
 \begin{align*}
 x_t &= 0.9 x_{t-1} + \sigma_j \epsilon_t; \quad \text{with } \epsilon_t \sim N(0,1) \\
 y_t &= x_t + \eta_t; \quad \text{with } \eta_t \sim N(0, \sigma^2) \\
 J_t &\text{ are iid Bernoulli r.v. with} \\
 p(J_t = 1) &= 1 - p(J_t = 2) = \pi_t \\
 \sigma_j &\neq \sigma_t
 \end{align*}
 \]

- We only observe \(y_t \), interested in recovering \(x_t \)

The Question

- Assume that we \textit{KNOW} the parameters and \textit{KNOW} the distribution of the initial signal \(x_0 \), how should we estimate those unobserved signals?

- Kalman filter: \(x_t = a x_{t-1} + \sigma_j \epsilon_t; \quad \text{with } \epsilon_t \sim N(0,1) \\
 y_t = x_t + \eta_t; \quad \text{with } \eta_t \sim N(0, \sigma^2) \\
 J_t &\text{ are iid Bernoulli r.v. with} \\
 p(J_t = 1) &= 1 - p(J_t = 2) = \pi_t \\
 \sigma_j &\neq \sigma_t
 \]

\[
\begin{align*}
A &\text{ priori: } x_t \sim \mu, \sigma^2 \\
A &\text{ posterior: } x_t | y_t \sim \mu, \sigma^2
\end{align*}
\]

- \(\mu = \frac{a \mu_t + \sigma^2_\epsilon_j \sigma^2_t}{a \sigma^2_\epsilon_j + \sigma^2_t} \)

- \(\sigma_t' = \frac{1}{a \sigma^2_\epsilon_j + \sigma^2_t} \)

- \(\sigma_j' = \frac{1}{a \sigma^2_\epsilon_j + \sigma^2_t} \)

- Best online estimate of the \(x_t \): the Bayes estimate \(\hat{x}_t = E(x_t | y_1, \ldots, y_t) \)

- Delayed estimate \(\tilde{x}_t = E(x_t | y_1, \ldots, y_{t+1}) \)

- Question: how to compute these estimates?

 - Kalman filter for linear models
 - Numerical approximation for others.
 - Monte Carlo?
Monte Carlo Approach

- Local view: how to do

\[x_0 \rightarrow x_1 \rightarrow x_2 \]

How to propagate from a distribution of \(x_0 \) to a distribution of \(x_1 \).

\[g_0(x_0) \rightarrow P(x_1 | y_1) \propto \int g(x_1 | x_0)g_0(x_0)dx_0 \]

Denoted by \(g(x_1) \)

Prior weighted by the likelihood.

Back to the State-space model

- Suppose we knew \(\pi_{s-1}(x_{s-1}) = p(x_{s-1} | Y_{s-1}) \), for time \(S \)

\[\pi_s(x_s) = p(x_s | Y_s) \propto \int \pi_{s-1}(x_{s-1})p_s(x_s | x_{s-1})dx_{s-1} \]

A Monte Carlo approximation of \(\pi_s(x_s) \)

A Graphical View of the Particle/Bootstrap Filter

Forward looking

- Examine the next few steps:

\[[x_t | y_1, y_2, y_3] \propto \int \cdots dx_0 dx_2 dx_s \]

Approximations?

MCMC iterations?

What has been achieved?

- From a set of Monte Carlo samples at time \(t-1 \) to a set of weighted Monte Carlo samples at time \(t \):

\[\{x_{t-1}^{(i)} \}_{i=1}^m \xrightarrow{\text{samp & wgt.}} \{x_t^{(j)}, w_t^{(j)} \}_{j=1}^m \]

- The weighted sample is proper w.r.t. the new posterior:

\[\frac{1}{m} \sum_{i=1}^m w_t^{(i)}h(x_t^{(i)}) \xrightarrow{\text{w.m.t.}} E[h(x_t) | Y_t] \]

- We do not have to do resampling and do not have to have equally weighted samples.

\[\{x_{t-1}^{(i)}, w_{t-1}^{(i)} \}_{i=1}^m \xrightarrow{\text{samp & wgt.}} \{x_t^{(j)}, w_t^{(j)} \}_{j=1}^m \]

Important issue: how to produce a good set of (weighted) particles

- Restriction: particles at time 0 cannot be easily regenerated or "moved."

 - If \(p(x_t | x_{t-1}^{(i)}, y_t) \) is easy to handle, then \(x_t^{(i)} \) should be drawn from it. (weighting is still needed)

 - If \(p(x_t | x_{t-1}^{(i)}, y_t) \) is not in closed form, we may do some ad hoc adjustment, e.g., kernel smoothing? MCMC iterations?

 - Other? Take an importance sampling perspective.
Global View

- If we can simulate from the "posterior"
 \[\pi_j(x_j) = p(x_j, x_{j-1}, \ldots, x_1 | y_1, \ldots, y_j; \theta, \phi) \]
 \[\propto g_j(x_j) \prod_{t=1}^{j} f_j(y_t, | x_t, \phi) g_j(x_t, | x_{t-1}, \theta) \]

A growing system with one \(x_j \) added a time.

With Resampling

- With weighted samples \((w_j^{(i)}, x_j^{(i)}), j=1, \ldots, m \), we can resample \(x_j^{(i)} \) from the set of \(x_j^{(j)} \) with probability proportional to the \(w_j^{(i)} \). Then we proceed with \((1, x_j^{(i)}) \) for processing \(x_{j+1} \).
- This is equivalent to use \(\frac{1}{m} \sum_{j=1}^{m} w_j^{(i)} p(x_{j+1} | y_j, x_j^{(i)}) \)
- for generating \(x_{j+1} \)
- Why resampling? No use if we estimate \(E(h(x_j)|\mathcal{Y}) \)
- Useful only for the future!!
- Don’t need real “resampling”, just a “reallocation.”

A Mixture Kalman Filter

- For conditional DLM,
 \[x_t = G_{t,j} x_{t-1} + \varepsilon_{t,j}, \quad \text{if } J_{t,j} = j_1; \]
 \[y_t = F_{t,j} x_t + \eta_{t,j}, \quad \text{if } J_{t,j} = j_2; \]

 If we knew the values of the indicators \(J_t = (J_{t,1}, J_{t,2}) \), then the model reduces to a DLM and the KF can be applied.

 - Impute the indicators using the sequential importance sampling technique.

Conditional Dynamic Linear Model

- We consider the following model:
 \[x_t = G_{t,j} x_{t-1} + \varepsilon_{t,j}, \quad \text{if } J_{t,j} = j_1; \]
 \[y_t = F_{t,j} x_t + \eta_{t,j}, \quad \text{if } J_{t,j} = j_2; \]

 where \(\varepsilon_{t,j} \sim N(0, \sigma^2); \eta_{t,j} \sim N(0, \sigma^2) \)

 \(J_t = (J_{t,1}, J_{t,2}) \) is called a dynamic indicator process.

 We can "reconfigure" the system!

Example: Outlier model

- Consider
 \[x_t = 0.9x_{t-1} + \sigma_x \varepsilon_t; \quad \text{with } \varepsilon_t \sim N(0, 1) \]
 \[y_t = x_t + \sigma_y \eta_t; \quad \text{with } \eta_t \sim N(0, \sigma^2) \]

 \(J_t \) are iid Bernoulli, with \(p(J_t = 1) = 0.9 \)

 \(\sigma_x = 0.2; \sigma_y = 1.2; \sigma = 0.8 \)

 Key:
 \[p(J_t = j | \mathcal{E}_{t-1}; y_t) = C_j \mathcal{N}(x_t | \mu_j, V_j) \]

 A mixture of \(M=50 \) filters gave us good estimates of the state variables \(x_t \).