Fish Biomechanics

Robert E. Shadwick
George V. Lauder

Series Editors: David J. Randall and Anthony P. Farrell

ISBN-10: 0-12-350447-0
FISH BIOMECHANICS

Edited by

ROBERT E. SHADWICK
Canada Research Chair
Department of Zoology
University of British Columbia
Vancouver, British Columbia
Canada

GEORGE V. LAUDER
Alexander Agassiz Professor
Department of Organismic and Evolutionary Biology
Museum of Comparative Zoology
Harvard University
Cambridge, Massachusetts
PREFACE

This is the first multi-authored volume on fish biomechanics to appear in over twenty years. In that time the field has grown immensely, with many new experimenters using new experimental techniques to probe questions of how fish work. Consequently, the published literature in fish biomechanics has grown rapidly, and it is time for a comprehensive review and synthesis of the important findings of recent research to update the classic *Fish Biomechanics* volume edited by Paul Webb and Danny Weihs in 1983.

This book begins at the front end of the fish with important biomechanical events that involve the head: breathing and eating. The complexity of head structure is one of the most distinctive and evolutionarily interesting aspects of fishes. The interaction of bones, joints and muscles of the head is highlighted in Chapter 1 by Brainerd and Ferry-Graham in their review of the mechanics of respiratory pumping. They discuss two-phase (suction and pressure) pumps as well as ram ventilation and air breathing. The theme of head structure as a set of muscle-powered levers and linkage bars is further elaborated in Chapters 2 and 3 which present detailed accounts of feeding mechanics, a classic illustration of an elegant form and function relationship. Westneat reviews the great diversity of skull morphologies and feeding strategies in fish groups, showing how different kinematic models have been developed, and provides clear illustrations based on high speed videography, as well as discussions of muscle activity patterns associated with feeding activities and their evolutionary relationships. Wainwright then describes how the pharyngeal jaw apparatus, a unique aspect of fish trophic biology, is designed from multiple skeletal elements modified from gill arches. He summarizes recent work on the morphology and the kinematics of pharyngeal jaws based on experimental approaches of cineradiography and sonomicrometry.

Apart from breathing and eating, one of the most important and interesting activities fishes perform is locomotion, and this is broadly the focus of the remainder of the book. Swimming and maintaining hydrostatic equilibrium go hand in hand; in Chapter 4 Coombs and van Netten discuss the structure and biomechanical features of the lateral line system as a collection of flow sensors, and how this system is used to provide information to the fish about...
the hydrodynamic structure of its environment that aids locomotion and behavior. The body of a fish can be regarded as a complex mechanical structure, in which muscles generate forces and movement, while skeletal elements bear the loads and link the internal muscle action to the external resistive fluid medium. In Chapter 5 Summers and Long provide an overview of the engineering principles used to analyse both the static and dynamic mechanical properties of biological materials, and then discuss current data on the mechanical behaviour of fish skeletal tissues in the context of the various locomotor modes of fishes. A major focus of research on fish swimming has been the contractile properties of locomotor muscles, most recently advanced by use of the in vitro work loop technique to study power production under simulated swimming conditions. In Chapter 6 Syme provides a comprehensive review of the biomechanical properties of skeletal muscle, and shows how studies of isolated muscle have been used to understand the various strategies fish use to power swimming under different conditions. The use of muscle in undulatory swimming is further considered in Chapter 7 where Shadwick and Gemballa describe the structural organization of the lateral myomeres and their connective tissue linkages as the pathway of force transmission along the body. They also discuss body kinematics and muscle dynamics in steady swimming, noting the general trends as well as the exceptions exhibited by the highly specialized tunas and lamnid sharks. The important problem of maintaining both stability and maneuverability is discussed in detail by Webb in Chapter 8, illustrating the elegant biomechanical solutions attained by fishes, and highlighting the importance of this knowledge in biomimetic designs of underwater autonomous vehicles. Wakeling reviews the specific problem of unsteady fast-start maneuvers in Chapter 9, by considering the sequence of events that initiate muscle contraction, bend the body, and generate the hydrodynamic forces that accelerate the fish. The fast-start (c-start) escape response of fishes has been of great importance as a system for understanding the neural control of behavior, and this chapter provides a synthesis of recent advances in the biomechanics of fish escape responses.

Fish pectoral fin function during locomotion has received a great deal of attention in the past twenty years. In Chapter 10, Drucker and his colleagues review a large amount of data on pectoral fin morphology, kinematics, and hydrodynamics, and discuss the ecological implications of different pectoral fin designs. Perhaps the most noticeable feature of fish locomotion is the bending of the body; Lauder and Tytell update classical descriptions of undulatory locomotion with recent experimental data in Chapter 11, where they also discuss new hydrodynamic data from freely-swimming fishes that highlight the importance of three-dimensional effects. Finally, biomechanical approaches are moving out of the laboratory and playing an increasing role in understanding the field behavior of fishes and helping in conservation efforts.
In Chapter 12, Castro-Santos and Haro synthesize a large body of work on the migration and passage of fishes around dams, and describe new tagging technology and bioenergetic models that will guide future efforts in conserving fish stocks.

The editors wish to thank David Randall and Tony Farrell for help and encouragement in the formulation of this volume, Andrew Richford and Kirsten Funk at Academic Press offices in London and San Diego for shepherding this volume through the publication process. Numerous colleagues provided insightful reviews of chapter drafts, and we thank all the authors for their patience and cooperation throughout this endeavour.

Robert E. Shadwick
George V. Lauder
Vancouver and Boston
CONTRIBUTORS

The numbers in parentheses indicate the pages on which the authors' contributions begin.

ELIZABETH L. BRAINERD (1), Biology Department and Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Amherst, Massachusetts

THEODORE CASTRO-SANTOS (469), S.O. Conte Anadromous, Fish Research Center, Turners Falls, Massachusetts

SHERYL COOMBS (103), Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio

ELIOT G. DRUCKER (369), Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts

LARA A. FERRY-GRAHAM (1), Moss Landing Marine Labs, California State Universities, Moss Landing, California

SVEN GEMBALLA (241), Department of Zoology, University of Tübingen, Tübingen, Germany

ALEX HARO (469), S.O. Conte Anadromous, Fish Research Center, Turners Falls, Massachusetts

GEORGE V. LAUDER (425), Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts

JOHN H. LONG, JR. (141), Department of Biology, Vassar College, Poughkeepsie, New York

*Current address: Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island.
CONTRIBUTORS

ROBERT E. SHADWICK (241), Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada

ADAM P. SUMMERS (141), Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California

DOUGLAS A. SYME (179), Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

ERIC D. TYTTELL (425), Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts

SIETSE VAN NETTEN (103), Department of Neurobiophysics, University of Groningen, 9747 Groningen, The Netherlands

PETER C. WAINWRIGHT (77), Section of Evolution & Ecology, University of California, Davis, California

JAMES M. WAKELING (333), Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Herts, United Kingdom

JEFFREY A. WALKER (369), Department of Biology, University of Southern Maine, Portland, Maine

PAUL W. WEBB (281), School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan

MARK W. WESTNEAT (29, 369), Department of Zoology, Field Museum of Natural History, Chicago, Illinois
CONTENTS

CONTRIBUTORS ix
PREFACE xi

1. Mechanics of Respiratory Pumps
 Elizabeth L. Brainerd and Lara A. Ferry-Graham
 I. Introduction 1
 II. Aquatic Respiratory Pumps 2
 III. Aerial Respiratory Pumps 14
 IV. Future Directions 24
 References 25

2. Skull Biomechanics and Suction Feeding in Fishes
 Mark W. Westneat
 I. Introduction 29
 II. Skull Morphology and Mechanisms 31
 III. Biomechanical Models of Skull Function 36
 IV. Suction Feeding for Prey Capture 42
 V. Ecomorphology of Fish Feeding 59
 VI. Phylogenetic Patterns of Feeding in Fishes 63
 VII. Summary and Conclusions 68
 References 68

3. Functional Morphology of the Pharyngeal Jaw Apparatus
 Peter C. Wainwright
 I. Introduction 77
 II. The Pharyngeal Jaw Apparatus of Perciform Fishes 79
CONTENTS

III. Innovation in the Pharyngeal Jaw Apparatus	90
IV. Summary	98
References	99

4. The Hydrodynamics and Structural Mechanics of the Lateral Line System

Sheryl Coombs and Sietse van Netten

I. Introduction	103
II. General Function, Structure, and Organization	107
III. Hair Cell Micromechanics	111
IV. Lateral Line Mechanics and Hydrodynamics	116
V. Concluding Remarks	132
References	134

5. Skin and Bones, Sinew and Gristle: The Mechanical Behaviour of Fish Skeletal Tissues

Adam P. Summers and John H. Long, Jr.

I. Introduction	141
II. A Primer on Mechanical Behaviour	144
III. Bone	152
IV. Cartilage	155
V. Tendon	160
VI. Skin	162
VII. Whole Body Mechanics	167
VIII. Conclusions	171
References	172

6. Functional Properties of Skeletal Muscle

Douglas A. Syme

I. Introduction	179
II. Ultrastructure	181
III. Fiber Types	182
IV. Patterns of Innervation	187
V. Mechanics of Contraction	189
VI. Scaling	208
VII. Axial Variation	211
CONTENTS

VIII. Effects of Temperature 218
IX. Summary 228
X. Future Directions 231
 References 232

7. Structure, Kinematics, and Muscle Dynamics in Undulatory Swimming
 Robert E. Shadwick and Sven Gemballa
 I. Introduction 241
 II. Myomere Structure and Force Transmission Pathways 243
 III. Steady Swimming Kinematics 252
 IV. Muscle Dynamics Along the Body in Steady Swimming 258
 V. Specializations in Thunniform Swimmers 268
 VI. Summary and Future Directions 273
 References 274

8. Stability and Maneuverability
 Paul W. Webb
 I. Introduction 281
 II. General principles 282
 III. Stability 303
 IV. Maneuvering 312
 V. Future Directions 319
 References 321

 James M. Wakeling
 I. Introduction 333
 II. Initiation of the Fast Start 335
 III. Muscular Contraction Acts to Bend the Fish 338
 IV. Stage 1 Body Bending Occurs with a Traveling Wave of Curvature 342
 V. Muscle Power Production and Force Transmission to the Water 346
 VI. Hydrodynamic Forces Accelerate the Body 350
 VII. Variations in Fast-Start Performance 357
 VIII. Conclusions 361
 IX. Future Directions 362
 References 363
Mechanics of Pectoral Fin Swimming in Fishes

Eliot G. Drucker, Jeffrey A. Walker, and Mark W. Westneat

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>369</td>
</tr>
<tr>
<td>II. Pectoral Fin Morphology</td>
<td>370</td>
</tr>
<tr>
<td>III. Motor Patterns of Pectoral Fin Locomotion</td>
<td>375</td>
</tr>
<tr>
<td>IV. Pectoral Fin Kinematics</td>
<td>379</td>
</tr>
<tr>
<td>V. Fluid Dynamics</td>
<td>392</td>
</tr>
<tr>
<td>VI. Pectoral Fin Swimming Performance</td>
<td>406</td>
</tr>
<tr>
<td>VII. Ecomorphology of Pectoral Fin Propulsion</td>
<td>412</td>
</tr>
<tr>
<td>VIII. Summary and Areas for Future Research References</td>
<td>416 417</td>
</tr>
</tbody>
</table>

Hydrodynamics of Undulatory Propulsion

George V. Lauder and Eric D. Tytell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>425</td>
</tr>
<tr>
<td>II. Classical Modes of Undulatory Propulsion</td>
<td>426</td>
</tr>
<tr>
<td>III. Theory of Undulatory Propulsion</td>
<td>430</td>
</tr>
<tr>
<td>IV. Experimental Hydrodynamics of Undulatory Propulsion</td>
<td>438</td>
</tr>
<tr>
<td>V. Integrating Theory and Experimental Data</td>
<td>460</td>
</tr>
<tr>
<td>VI. Prospectus References</td>
<td>461 462</td>
</tr>
</tbody>
</table>

Biomechanics and Fisheries Conservation

Theodore Castro-Santos and Alex Haro

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>469</td>
</tr>
<tr>
<td>II. Riverine Migrations</td>
<td>471</td>
</tr>
<tr>
<td>III. Towed Fishing Gear</td>
<td>492</td>
</tr>
<tr>
<td>IV. Intraspecific Diversity</td>
<td>494</td>
</tr>
<tr>
<td>V. Bioenergetics Modeling</td>
<td>498</td>
</tr>
<tr>
<td>VI. Conclusions and Recommendations References</td>
<td>504 507</td>
</tr>
</tbody>
</table>

Index

INDEX 525

Other Volumes in the Series

OTHER VOLUMES IN THE SERIES 541