Eric N. Jacobsen, 
						Department of Chemistry and Chemical Biology at Harvard University, 
						Organic Chemistry; 
						Eric N. Jacobsen,, 
						Nicole Minotti, Assistant,,
						617-496-3688 (ph) Group Information Photos Group Members Publications About Home
Picture of Eric JacobsenCatalysts not only accelerate chemical reactions, but can also exert remarkable kinetic control over product distribution. My research group is interested in all aspects of selective catalysis, and especially in the design, discovery, and study of systems that mediate fundamentally interesting and useful organic reactions. The search for practical and widely applicable catalysts for organic synthesis provides a strong driving force for our research. In addition, we apply the tools of physical-organic chemistry to gain insight into the transition structure geometries and molecular recognition events that control selectivity.

The following topics in selective catalysis are currently under investigation in our laboratories:

  • Asymmetric Catalysis
  • Selective C- C Bond Formation and Cleavage
  • Enzymatic Oxidations
  • Mimics of Physiologically Important Enzymes
  • New Approaches to Catalyst Design

The control of absolute and relative stereochemistry is an underlying goal in much of this work because of the crucial role played by the three-dimensional structure of molecules in their biological function. The development of enantioselective oxidation catalysts has been of particular interest to us, and we have succeeded in devising highly enantioselective small-molecule catalysts in which selectivity is predicated solely through non-bonded interactions. The utility of these catalysts has been illustrated in our group through their application to the synthesis of various classes of important biologically active compounds.