A main goal of generative metrics is to define possible and impossible meters. In this study we examine a large corpus of modern Chinese folk verse in order to determine the range of possible meters. We also compare several theories of meter and how they handle the typology of Chinese folk verse.

We choose modern Chinese folk verse for three reasons. First, folk verse better reflects the rhythmic intuition of native speakers. Second, folk verse offers a wider range of variations than scholarly verse. Third, the meter of a modern poem is easy to determine, since we can use native speakers’ intuitions. In contrast, disagreements in the analysis of historical poems are often hard to resolve.

Our corpus consists of over 1,600 poems, of which about 1,200 have fairly regular line lengths. Our analysis so far shows that a wide range of line lengths are used. In addition, for a given line length there can often be different meters. For example, 5-syllable lines can have at least three meters: (SW)(SW)(SØ), (SW)W(SW), and (SW)(SW)W. Similarly, 6-syllable lines can be (SW)(SW)(SW), (SW)W(SW)W, and (SW)(SØ)(SW)(SØ), and 7-syllable lines can be (SW)(SW)(SW)(SØ), (SW)W(SW)(SW), (SW)(SW)W(SW), (SW)(SW)(SØ)(SW), W(SW)WW(SW), and W(SW)(SW)(SW). In addition, some lines can have one or more extra syllables, which can be read quickly so that the line has the same number of beats as other lines. Which beats can accommodate an extra syllable is another question of interest that needs to be determined and explained.

Having determined a typology of meters (extensively if not exhaustively), we then discuss how current theories account for the data. We first discuss the bracketed-grid theory (Fabb 2002, Fabb and Halle 2005), which is a revision of the template-based theory (Halle and Keyser 1971 and subsequent works). We then discuss theories based on ranked constraints (Golston 1998, Golston and Riad 2005) or parameters (Hanson and Kiparsky 1989).

All previous theories assume that, in order to generate different meters in the same language, one must use different rules, different parameter settings, or different constraint rankings. In other words, each meter has a different grammar and no constraint needs to be observed by all meters. We offer a different analysis in which there is a small set of constraints (in particular FOOT-BINARITY and NO-LAPSE) that all meters observe. The constraints are non-deterministic in that there are many ways to satisfied them, and hence there is a wide range of possible meters. In other words, there is one grammar in our analysis, and the user is free to choose any meter as long as it satisfies the grammar. Our analysis not only offers a simpler account of metrical typology but also a new approach to linguistic variation in general.
References: