Naive Learning in Social Networks
and the Wisdom of Crowds

Benjamin Golub
Graduate School of Business

Matthew O. Jackson
Department of Economics

Stanford University

July 13, 2008
Motivation

When do large societies aggregate information well and when is a lot of information “wasted”?
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
 - Agents explicitly discuss beliefs (not 0/1 choices).
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
 - Agents explicitly discuss beliefs (not 0/1 choices).
 - Relationships/trust in the social network can vary in strength (not 0/1 links).
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
 - Agents explicitly discuss beliefs (not 0/1 choices).
 - Relationships/trust in the social network can vary in strength (not 0/1 links).
- Useful features of model:
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
 - Agents explicitly discuss beliefs (not 0/1 choices).
 - Relationships/trust in the social network can vary in strength (not 0/1 links).
- Useful features of model:
 - Tractability; easy and explicit measures of dynamics and influence.
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
 - Agents explicitly discuss beliefs (not 0/1 choices).
 - Relationships/trust in the social network can vary in strength (not 0/1 links).
- Useful features of model:
 - Tractability; easy and explicit measures of dynamics and influence.
 - Can study trade-offs involving widely observed agents.
Motivation

- When do large societies aggregate information well and when is a lot of information “wasted”?
- We build on a model where:
 - Agents explicitly discuss beliefs (not 0/1 choices).
 - Relationships/trust in the social network can vary in strength (not 0/1 links).
- Useful features of model:
 - Tractability; easy and explicit measures of dynamics and influence.
 - Can study trade-offs involving widely observed agents.
 - Many interesting networks have poor learning; many also have good learning.
There are n agents, indexed by a set $A = \{1, 2, \ldots, n\}$.
There are n agents, indexed by a set $A = \{1, 2, \ldots, n\}$. Everybody is trying to estimate an unknown parameter $\theta \in \mathbb{R}$.
There are n agents, indexed by a set $A = \{1, 2, \ldots, n\}$.

Everybody is trying to estimate an unknown parameter $\theta \in \mathbb{R}$.

Time is discrete: $t = 0, 1, 2, \ldots$. Think of these as days.
There are n agents, indexed by a set $A = \{1, 2, \ldots, n\}$.

Everybody is trying to estimate an unknown parameter $\theta \in \mathbb{R}$.

Time is discrete:
- $t = 0, 1, 2, \ldots$. Think of these as days.

The estimate or belief of agent i at time t is $b_i(t)$.
Agents and Beliefs

- There are n agents, indexed by a set $A = \{1, 2, \ldots, n\}$.
- Everybody is trying to estimate an unknown parameter $\theta \in \mathbb{R}$.
- Time is discrete: $t = 0, 1, 2, \ldots$. Think of these as days.
- The estimate or belief of agent i at time t is $b_i(t)$.
- The vector of all beliefs is $b(t) \in \mathbb{R}^n$.
Agents and Beliefs

- There are n agents, indexed by a set $A = \{1, 2, \ldots, n\}$.
- Everybody is trying to estimate an unknown parameter $\theta \in \mathbb{R}$.
- Time is discrete: $t = 0, 1, 2, \ldots$. Think of these as days.
- The estimate or belief of agent i at time t is $b_i(t)$.
- The vector of all beliefs is $\mathbf{b}(t) \in \mathbb{R}^n$.
- The initial beliefs $b_i(0)$ are independent random draws with mean θ and all lie in the same compact set $[-K, K]$.
The belief of agent i at time $t + 1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.
The belief of agent i at time $t + 1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.

$$b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)$$
Updating of Beliefs (DeGroot 1974)

The belief of agent i at time $t + 1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.

$$b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)$$
Updating of Beliefs (DeGroot 1974)

The belief of agent i at time $t+1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.

$$b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)$$

$$b_1(t + 1) = 0.6 b_1(t) + 0.2 b_2(t) + 0.2 b_3(t)$$
The belief of agent i at time $t + 1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.

\[b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t) \]

\[b_1(t + 1) = .6b_1(t) + b_2(t) + b_3(t) \]
Updating of Beliefs (DeGroot 1974)

The belief of agent i at time $t + 1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.

$$b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)$$

$$b_1(t + 1) = .6 b_1(t) + .2 b_2(t)$$
The belief of agent \(i \) at time \(t + 1 \) is a weighted average of the beliefs of some agents (possibly including himself!) at time \(t \).

\[
b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)
\]

For example:

\[
b_1(t + 1) = .6b_1(t) + .2b_2(t) + .2b_3(t)
\]
Updating of Beliefs (DeGroot 1974)

The belief of agent i at time $t + 1$ is a weighted average of the beliefs of some agents (possibly including himself!) at time t.

$$b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)$$

where

$$\sum_{j \in A} T_{ij} = 1.$$
Updating of Beliefs: Matrix Form

\[b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t) \]
Let T be a matrix whose (i, j) entry is T_{ij}.

$$b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)$$

Let T be a matrix whose (i, j) entry is T_{ij}.

\[T_{ij} \]
Updating of Beliefs: Matrix Form

\[b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t) \]

Let \(T \) be a matrix whose \((i, j)\) entry is \(T_{ij} \).

\[b(t + 1) = T b(t) \]
Updating of Beliefs: Matrix Form

\[b_i(t+1) = \sum_{j \in A} T_{ij} b_j(t) \]

Let \(T \) be a matrix whose \((i, j)\) entry is \(T_{ij} \).

\[b(t+1) = Tb(t) \]

\[\Rightarrow \quad b(t) = T^t b(0). \]
Updating of Beliefs: Matrix Form

Let \(T \) be a matrix whose \((i,j)\) entry is \(T_{ij} \).

\[
b_i(t + 1) = \sum_{j \in A} T_{ij} b_j(t)
\]

\[
b(t + 1) = T b(t)
\]

\[\Rightarrow b(t) = T^t b(0).\]

Also, \(\sum_{j \in A} T_{ij} = 1 \Rightarrow \) each row of \(T \) sums to 1.
The matrix \mathbf{T} naturally corresponds to a social network. The entry T_{ij} describes the “trust” or “weight” that agent i places on the beliefs of agent j in forming his next-period beliefs.
Friendships at Westridge School

Under some fairly mild conditions, the belief of each individual i eventually settles down to some limit

$$b_i(\infty) = \lim_{t \to \infty} b_i(t).$$
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.

$$T^{(1)}$$,
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.

$$T^{(1)}, T^{(2)},$$
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.

$$T^{(1)}, T^{(2)}, T^{(3)}.$$
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.

$T^{(1)}, T^{(2)}, T^{(3)}, \ldots,$
Now let us consider a sequence of societies, with agents \(A_n \). We assume \(|A_n| = n \).

\[T^{(1)}, T^{(2)}, T^{(3)}, \ldots, T^{(n)}, \]
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.

$$T^{(1)}, T^{(2)}, T^{(3)}, \ldots, T^{(n)}, \ldots$$
Now let us consider a sequence of societies, with agents \(A_n \). We assume \(|A_n| = n \).

\[T^{(1)}, T^{(2)}, T^{(3)}, \ldots, T^{(n)}, \ldots \]

Each society \(n \) has an associated vector of beliefs evolving over time: \(b^{(n)}(t) \).
Now let us consider a sequence of societies, with agents A_n. We assume $|A_n| = n$.

$$T^{(1)}, T^{(2)}, T^{(3)}, \ldots, T^{(n)}, \ldots$$

Each society n has an associated vector of beliefs evolving over time: $b^{(n)}(t)$.

Assume beliefs in every society converge; let the vector of limiting beliefs in society n be $b^{(n)}(\infty)$.
Wisdom means that, as society grows large, limiting beliefs converge to the truth.
Wisdom means that, as society grows large, limiting beliefs converge to the truth.

Definition

The sequence \((T^{(n)})\) is *wise* if

\[
\lim_{n \to \infty} \max_{i \in A_n} |b_i^{(n)}(\infty) - \theta| = 0.
\]
Now return for a moment to the fixed n setting.
Now return for a moment to the fixed n setting.

A group B is merely a subset of the set of agents A.
Now return for a moment to the fixed n setting.

A group B is merely a subset of the set of agents A.

Denote by $T_{ij}(p)$ the (i, j) entry of T^p.
Now return for a moment to the fixed n setting.

A group B is merely a subset of the set of agents A.

Denote by $T_{ij}(p)$ the (i,j) entry of T^p.

Write

$$T_{i,B}(p) = \sum_{j \in B} T_{ij}(p).$$
A group B is prominent in p steps relative to T if everyone outside B is influenced to some extent by B in p steps.
A group B is prominent in p steps relative to T if everyone outside B is influenced to some extent by B in p steps.

The minimal amount of such influence is called the p-step prominence of B.

Definition
Prominent Groups

- A group B is prominent in p steps relative to T if everyone outside B is influenced to some extent by B in p steps.
- The minimal amount of such influence is called the p-step prominence of B.

Definition

The group B is *prominent in p steps* relative to T if for each $i \notin B$,

$$\pi_B(T; p) = \min_{i \notin B} T_i, B(p) > 0.$$
A group B is prominent in p steps relative to T if everyone outside B is influenced to some extent by B in p steps.

The minimal amount of such influence is called the p-step prominence of B.

Definition

The group B is *prominent in p steps* relative to T if for each $i \notin B$, we have $T_{i,B}(p) > 0$.
A group B is prominent in p steps relative to T if everyone outside B is influenced to some extent by B in p steps.

The minimal amount of such influence is called the p-step prominence of B.

Definition

The group B is *prominent in p steps* relative to T if for each $i \notin B$, we have $T_{i,B}(p) > 0$.

Call $\pi_B(T; p) = \min_{i \notin B} T_{i,B}(p)$ the *p-step prominence* of B relative to T.
Example of a Prominent Group

The group in the dashed circle is prominent in 2 steps. Note that the rest of T can be completed arbitrarily.
Example of a Prominent Group

The group in the dashed circle is prominent in 2 steps.
Example of a Prominent Group

The group in the dashed circle is prominent in 2 steps.

Note that the rest of T can be completed arbitrarily.
Now return to the asymptotic setting. A family is just a sequence of groups \((B_n)\).
Now return to the asymptotic setting. A family is just a sequence of groups \((B_n)\).

Intuitively: \((B_n)\) is uniformly prominent with respect to \((T^{(n)})\) means:

- Each \(B_n\) is a prominent group with respect to \(T^{(n)}\).
- The prominence does not decay to 0.
Prominent Families: What We Are Ruling Out

$n = 10$

$n = 15$

$n = 20$
The family \((B_n)\) is *uniformly prominent* relative to \((T^{(n)})\)
Prominent Families: Formal Definition

Definition

The family \((B_n)\) is *uniformly prominent* relative to \((T^{(n)})\) if there exists a constant \(\mu > 0\) so that for each \(n\), there is a \(p\) so that

\[
\pi_{B_n}(T; p) \geq \mu.
\]
Proposition

If there is a finite, uniformly prominent family with respect to $(T^{(n)})$, then the sequence is not wise.
Intuition
Intuition

A Positive Result

$t = 0$

Small Prominent Families Prevent Wisdom

Intuition

Benjamin Golub and Matthew O. Jackson

Naive Learning in Social Networks
Intuition

$t = 1$

Benjamin Golub and Matthew O. Jackson

Naive Learning in Social Networks
A network satisfies *balance* if for every finite family, the ratio of trust coming in to trust coming out is bounded.
A network satisfies *balance* if for every finite family, the ratio of trust coming in to trust coming out is bounded.

A network satisfies *minimal out-dispersion* if,
A Positive Result

- A network satisfies *balance* if for every finite family, the ratio of trust coming in to trust coming out is bounded.
- A network satisfies *minimal out-dispersion* if, for every finite family \((B_n)\)
A Positive Result

- A network satisfies *balance* if for every finite family, the ratio of trust coming in to trust coming out is bounded.
- A network satisfies *minimal out-dispersion* if, for every finite family \((B_n)\) and every family \((C_n)\) with \(|C_n|/n \to 1\).
A Positive Result

- A network satisfies *balance* if for every finite family, the ratio of trust coming in to trust coming out is bounded.
- A network satisfies *minimal out-dispersion* if, for every finite family \((B_n)\) and every family \((C_n)\) with \(|C_n|/n \to 1\) we have \(T_{B_n,C_n} > r > 0\).
A network satisfies *balance* if for every finite family, the ratio of trust coming in to trust coming out is bounded.

A network satisfies *minimal out-dispersion* if, for every finite family \((B_n)\) and every family \((C_n)\) with \(|C_n|/n \to 1\) we have \(T_{B_n,C_n} > r > 0\).

Theorem

If \((T^{(n)})\) satisfies balance and minimum out-dispersion, then it is wise.
Small prominent groups (media, pundits) are bad for information aggregation when agents are naive.

Balance and dispersion conditions can guarantee wisdom.
Can special kinds of prominent groups ever be good for learning?
Can special kinds of prominent groups ever be good for learning?

How many “good pollsters” do we need to add to ensure efficient learning, even if the initial structure is very bad?
Further Work

- Can special kinds of prominent groups ever be good for learning?
- How many “good pollsters” do we need to add to ensure efficient learning, even if the initial structure is very bad?
- Interpolate between purely behavioral and purely rational learning.
Further Work

- Can special kinds of prominent groups ever be good for learning?
- How many “good pollsters” do we need to add to ensure efficient learning, even if the initial structure is very bad?
- Interpolate between purely behavioral and purely rational learning.
- Nonhomogeneous updating (updating matrix changes).