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Executives often employ experts who draw 
on rich information to recommend an appropri-
ate action. For instance, a commander-in-chief 
is advised by several intelligence experts about 
how to respond to potential threats.

When such interactions are discussed in pol-
icy circles, a common worry is that there is not 
enough sharing of information among experts, 
resulting in bad advice and inefficient outcomes. 
On the one hand, it is clear that combining 
information can result in better decisions. On 
the other hand, integrating experts’ capacities 
could potentially interact with their incentives 
in ways that harm a principal. In this article, we 
focus on the latter force, and describe a class of 
examples in which a principal is worse off when 
experts share information.

Consider a situation where there is an 
unknown binary state of interest (e.g., whether 
a terrorist attack will be attempted). There is 
a correct decision for each state (e.g., whether 
to take costly preemptive measures). Each of 
several experts (e.g., the directors of the CIA 
and the FBI) chooses from a set of procedures, 
which generate information about the state. 
They then use that information to recommend 
an action to the executive, who decides which 
action to take. Each expert finds it costly to 
recommend the ex post incorrect action. The 
key payoff variables are the costs of two kinds 
of error: predicting the unusual event when 
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it is not going to happen (a false positive, or 
type I error) and failing to predict it when it 
is about to happen (a false negative, or type 
II error).

Experts’ incentives, which are exogenous in 
our model, are allowed not to be aligned with 
each other or with the principal’s interests. In 
particular, while everyone dislikes making 
errors, the way they trade off false positives and 
false negatives may differ. In making his choice, 
the principal aggregates both experts’ recom-
mendations optimally given his own payoffs.

One may conjecture that giving experts 
access to more information improves decisions. 
For example, if the principal and both experts 
trade off type I and type II errors in the same 
way, then the principal can delegate the deci-
sion to the experts, and—because the problem 
is essentially a single-agent one—sharing infor-
mation never makes the outcome worse.

We study whether it holds more generally 
that information sharing is beneficial for the 
principal. Sharing information is modeled as 
giving each expert access to some of the pro-
cedures possessed by the other. We show that 
in a natural class of examples (where informa-
tion structures are particularly simple), sharing 
brings about worse outcomes for the principal 
whenever it is desired by the experts.

In taking experts’ payoffs as exogenous, 
we abstract from some interesting contracting 
issues. However, given that experts often have 
large and privately known payoffs associated 
with their reputations, this is probably a closer 
fit to reality than a model in which (for example) 
a government offers the CIA director state-con-
tingent payments to align his incentives.

Our work relates to a literature on commit-
tees of experts giving advice in the presence of 
conflicts of interest—e.g., Li, Rosen, and Suen 
(2001); Li and Suen (2004); Suen (2004); and 
Ottaviani and Sørensen (2006). As in Kartik 
(2009), language has an intrinsic meaning in 
our model, and there is an exogenous cost to 
making statements that turn out to be incorrect. 
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For another recent study of strategic issues in 
the provision of advice, see Kamenica and 
Gentzkow (2011).

The structure of this note is as follows. In 
Section I, we set up the primitives and formally 
define sharing information. In Section II, we 
present an example showing how permitting 
sharing can hurt the principal. Section III dis-
cusses the result and offers some caveats.

I.  Model

A. The Environment

Agents.—The agents, also called experts, are 
indexed by i ∈ I.

States.—The state of interest is s ∈  = {0, 1}, 
corresponding to whether an event will occur. 
The random variable corresponding to the state 
is denoted by S. The “null hypothesis”—for the 
purpose of defining type I and type II errors—is 
state 0.

Technologies.—Each expert  can choose one 
of many procedures for generating a recommen-
dation ​x​i​ ∈ . Formally, a procedure is summa-
rized by a function π :  → [0, 1], where π(s) 
is the probability of making recommendations  
conditional on state s occurring—i.e., of being 
correct in state s. Thus, coordinatewise larger 
procedures correspond to better information 
about the state. The set of procedures avail-
able to expert i is called his technology and is 
denoted by ​Π​i​  . We will sometimes write proce-
dures as ordered pairs: (π(0), π(1)).

Timing and Payoffs

	 (i)	 Each expert i ∈ I chooses a procedure ​
π​i​ ∈ ​Π​i​.

	 (ii)	 The state is realized, with the following 
distribution:

		  S = {​1   
0
​ ​ with probability ​μ​1​          

with probability ​μ​0​ = 1 − ​μ​1​.
​

	 (iii)	 Each expert simultaneously generates 
a random recommendation ​X​i​, taking 
values in  (the state space). The rec-
ommendations are conditionally inde-
pendent given the state S, and satisfy 
P(​X​i​ = s | S = s) = ​π​i​(s).

	 (iv)	 Expert i’s (random) payoff is ​θ​ S​ 
i
 ​ 1{​X​i​ = S}. 

The amount ​θ​ S​ 
i
 ​ > 0 of the reward depends 

both on the expert’s identity and on the 
(random) state. The expert receives the 
reward only when his recommendation 
matches the state. We denote by ​U​i​  (​π​i​) 
expert i’s ex ante expected payoff from 
selecting procedure ​π​i​.

Principal.—The principal sees the vector  
(​X​i​​)​i∈I​ of recommendations and chooses an 
action a ∈ . His payoff is ​θ  ​ S​ p​ 1{S = a}, where ​
θ​ s​ 

p​ > 0 for every s ∈ .
The agents and principal are all risk-neutral.
An environment is defined as a tuple 

e = (I, μ, (​Π​i​​)​i∈I​  , (​θ​i​  ​)​i∈I​  , ​θ​ p​  ).

B. Technologies Arising from Signals

There are several ways to generate proce-
dures; here we present a simple way for a proce-
dure to come about as a use of a noisy signal. Let 
(Ω, , P) be a probability space on which the 
random variable S (the state) is defined. Suppose 
an expert i observes a random variable (a signal) 
taking values in a space , i.e., Z : Ω → . Any 
mixed strategy σ :  → Δ(  ), which generates 
(random) recommendations based on this sig-
nal, induces a procedure ​π​Z,σ​ via the definition 
​π​Z,σ​(s) = E[​σ​i​(Z )(s) | S = s].

The right-hand side is a conditional expec-
tation given that state s obtains. The quantity 
whose expectation is being taken is the prob-
ability put on s by the mixed strategy mapping 
signals Z to predictions. In other words: expert 
i’s strategy describes, for every signal he might 
see, a probability with which to make the rec-
ommendation s = 1. This induces a probability 
that his recommendation is correct conditional 
on any state, and is summarized by the proce-
dure ​π​Z,σ​ :  → [0, 1].

For a fixed random variable Z, let the tech-
nology Π(Z  ) be the set of procedures ​π​Z,σ​ as σ 
ranges over all mixed strategies.

C. Technologies: Assumptions and Definitions

This section focuses on assumptions about 
technologies. We want to permit experts to ran-
domize among procedures; to make recommen-
dations that don’t rely on information about the 
state; and to implement the “opposite” of a given 
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procedure. The following assumptions on tech-
nologies formalize these conditions.

ASSUMPTION 1: For each i, ​Π​i​ is convex.1

This follows from allowing experts to imple-
ment lotteries over the procedures available to 
them. Next, we assume each expert has access to 
trivial procedures, which always issue the same 
recommendation (and therefore do a perfect job 
of avoiding one kind of error).

ASSUMPTION 2: For each i, the technology ​Π​i​ 
contains the procedures (0, 1) and (1, 0).

Finally, if a procedure  can be implemented, 
then so can the procedure obtained by taking 
the output of that procedure and issuing the 
opposite recommendation.

ASSUMPTION 3: For each i, if π ∈ ​Π​i​  , then2 
1 − π ∈ ​Π​i​.

It will be helpful to define the set of pro-
cedures that must (under the foregoing three 
assumptions) be available to an expert, when-
ever his technology contains an arbitrary set of 
procedures. To this end, let  be the family of 
all technologies Π satisfying the above assump-
tions. As  is closed under intersections3 we 
can define the closure of Π, written cl(Π), as the 
smallest set containing Π and satisfying all the 
assumptions:

	 cl(Π)  = ​ ∩​ 
​
​
 Π′∈   
Π⊆Π′​

​
​  

  ​ Π′.

Finally, we define a simple technology as one 
that is generated by (i.e., is the closure of) a sin-
gle procedure.

DEFINITION 1: A technology Π is simple if 
there is some procedure π so that π = cl(π).

1 A convex combination of two procedures π and π′ is 
any procedure of the form απ + (1 − α)π′, with α ∈ [0, 1]. 
Addition and scaling of procedures is defined pointwise. 

2 The subtraction in the ensuing expression is defined 
pointwise. 

3 This is true of the set of technologies satisfying any 
single assumption. 

It can readily be checked that a technology 
Π is simple if and only if Π = Π(Z  ) for some 
random variable Z taking values in  = {0, 1}. 
Thus, simple technologies correspond to binary 
experiments.

D. Sharing Information

We will study the effects of experts sharing 
their technologies with each other. Technology 
sharing is assumed to be imperfect and so we 
first define a class of procedures that yield 
strictly less information than a given one.

DEFINITION 2: For a procedure π, we 
define the set of garblings of π to be L(π)  
= {απ + (1 −  α)π′ : π′  ∈  C, α  ∈  [0, 1)} , 
where C = cl(0/) is the set of uninformative 
procedures.4

The set L(π) is simply the set of procedures 
obtained by taking π and mixing it with a posi-
tive amount of some uninformative procedure—
i.e., effecting a nontrivial Blackwell garbling. 
We can now define what it means for experts to 
share their technologies.

DEFINITION 3: Given a tuple of technolo-
gies, Π = (​Π​i​​)​i∈I​  , we say that another tuple  
Π′ = (​Π​i​​)​i∈I​  , is a sharing of Π if,   for every 
i ∈ I, we have

	​ Π​ i​ ′​  =  cl​[ ​Π​i​ ∪ ​(     ​∪​ 
j∈I \{i}

​  
  ​ ​​  Π​​ij​ )​ ]​,

where ​​   Π​​ij​ ⊆ L(​Π​j​).
The definition stipulates that, after a sharing 

of information, each expert maintains access 
to his technology, and also has access to some 
technologies that are less informative (possibly 
only slightly) than those that were originally 
available to the other experts. Because of the 
definition of the operator L, sharing permits any 
expert to come arbitrarily close to replicating 
the procedures used by the others.

4 This is the set of all convex combinations of the proce-
dures (0, 1) and (1, 0). 
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E. Preferences over Environments

Given an environment, an agent i’s utility 
from using a technology π ∈ ​Π​i​ is

	​ U​i​(π)  = ​ ∑​ 
s∈

​ 
 

  ​ ​μ​s​ π(s)​θ​ s​ 
i
 ​.

When a profile π of procedures is played, the 
principal’s utility is

	​ U​p​(π)  = ​  sup   
A∈

​ E[​θ​ S​ 
p​ 1{S = A}],

where  is the family of all {0, 1}-valued ran-
dom variables (action choices) measurable with 
respect to the vector of recommendations (​X​i​​)​i∈I​.

A given environment e induces a (nonempty) 
set of optimal outcomes ​P​*​(e) = ​Π​i∈I​ ​P​ i​ *​, where ​
P​ i​ *​ consists of all those π ∈ ​Π​i​ that are optimal 
for agent i. We induce agents’ and the principal’s 
preferences over sets of outcomes from their 
basic preferences via the strong set order.

II.  Example

In this section we consider a simple example 
demonstrating that a principal may not want 
to allow experts to share information. In par-
ticular, we construct two environments, distin-
guished only by the fact that the technologies 
in the second are a sharing of those present in 

the first. Both experts strictly prefer the post-
sharing environment, but the principal strictly 
prefers the pre-sharing environment.

Suppose there are two experts i ∈ {1, 2}. 
Fixing the common prior μ, agents’ technolo-
gies ​Π​i​ allow them to avoid making type I (false 
positive) and type II (false negative) errors. 
Their technologies correspond to production 
possibility sets in error-avoidance space. For 
the case in which both experts’ technologies are 
simple, this is shown in Figure 1, panels A and 
B. Expert 1 has access to a single procedure ​π​1​ 
that results in the error rates given by point c. 
However, expert 1  could “flip” this procedure 
(making the opposite recommendation), result-
ing in the error rates given by point d. Expert 
1 can also make constant recommendations. 
This allows him to avoid making one type of 
error or the other for sure, generating the type 
I and type II error rates given by points a and 
b. Mixing among these four points, expert 1 
can achieve anything in the shaded convex hull 
of Figure 1, panel A.5 This shaded region cor-
responds to the error avoidance rates possible 
using technology ​Π​1​ = cl(​π​1​). Expert 2’s initial 
technology is constructed similarly in panel B. 

5 Of course, as an expert dislikes making both type I and 
type II errors, he will only ever choose error rates on the 
northeast boundary of this technology. 

Figure 1. Experts’ Technologies Correspond to Their Abilities to Avoid Type I and Type II Errors

Note: Panels A and B show the type I and type II error rates available to the two experts through their technologies.
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We will suppose that in the initial environment, 
both experts strictly prefer making informative 
recommendations: that their optimal choices are  
c and e.

Suppose now that the experts share their 
information. As sharing is imperfect, suppose 
that expert 1 gains access to error avoidance 
rates e′ and that expert 2 gains access to error 
avoidance rates c′. The new error avoidance pro-
duction possibilities for the experts are shown 
in Figure 2, panels A and B. We assume the 
experts will share their information in this way 
only when they both want to. Information shar-
ing will then occur if and only if: (i) expert 1 
prefers the error avoidance rates e′ to c; and (ii) 
expert 2 prefers the error avoidance rates c′ to e. 
Suppose then that we are in a situation where the 
experts agree to exchange information. Is such 
an exchange beneficial for the principal?

After the exchange of information, expert 1 
will choose to avoid making errors at rates  e′ 
instead of c while expert 2 will choose to avoid 
making errors at rates c′ instead of e. Despite 
the improvement in the technologies of each 
expert, collectively the predictions the experts 
make after sharing information are unambigu-
ously worse for any principal preferences. This 
is because at point c′ more type I and more type 
II errors are made than at point c; meanwhile, 
at point e′ both more type I and more type II 
errors are made than at point e. No matter how 

Figure 2. Experts’ Technologies After Sharing

Note: Sharing technologies permits both experts to make, potentially, fewer type I and fewer type II errors. Nevertheless, this 
can result in recommendations that are strictly less informative for the principal.

the principal chooses to use the experts’ predic-
tions after they have exchanged information, the 
principal could have done better with the predic-
tions the experts would have made had they not 
shared information. Interestingly, it is because 
both the experts want to share information that 
information sharing is bad for the principal.

III.  Discussion

The main aspects distinguishing our model 
from many other communication games are: 
(i) the requirement that experts make coarse 
predictions in the same space as the state space 
of interest; and (ii) the assumption that they 
enjoy exogenously given rewards when their 
predictions match the state. This perspec-
tive makes sense when the language in which 
experts give advice is not controlled by the 
principal who uses the information, and when 
“predicting correctly” has a meaning—and a 
value—beyond the interaction between the prin-
cipal and experts.

Our model of experts’ technologies requires 
each of them to use a single procedure in mak-
ing a recommendation (both before and after a 
sharing). We call this a “no synergies” assump-
tion. To take a concrete example, suppose that 
expert 1’s procedure allows him to track one 
suspect, and expert 2’s procedure allows him 
to track another suspect. Suppose that after a 
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sharing of information, expert 1 can simultane-
ously track both suspects. Then if, for example, 
the two suspects meet the same (unknown) third 
party, such a meeting may provide a strong indi-
cation that an attack is imminent. Expert 1 can 
use this information to issue a warning. In our 
model there are no such synergies from infor-
mation sharing.

The assumption of no synergies fits a case 
where each procedure6 is a complete descrip-
tion of an indivisible bureaucratic routine, 
and there are not enough resources for a given 
expert to run multiple such routines in paral-
lel. Alternatively, one can think of the model 
as holding constant each expert’s “quantity” 
of signals, while varying their “quality” via a 
sharing. In any case, after a sharing, an expert 
can choose from a larger set of procedures than 
before, but can still run only one.

If instead each agent could use several of the 
experiments available to him and exploit syner-
gies, then information sharing would result in 
different information improvements. In contrast 
to our result, these information improvements 
could lead to the experts’ collectively making 
more informative predictions after a sharing.

Synergies would be necessary in order for a 
sharing to be beneficial in the example we have 
outlined. Including them in the model would 
lead to a substantially richer analysis of when

6 Including the process of interpreting its results. 

information sharing is desirable. We conjecture 
that, even in the presence of synergies, experts 
may choose not to take advantage of them. In 
that case, the principal could still be worse off, 
due to phenomena similar to those demonstrated 
in our example. However, a full exploration of 
these ideas is left for future work.
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