Optimal storage capacity associative memories exhibit retrieval-induced forgetting

Andrew M. Saxe1 & Kenneth A. Norman2

1Center for Brain Science, Harvard University 2Department of Psychology, Princeton University

Overview

Retrieving a memory can, surprisingly, cause forgetting of related competitor memories: a phenomenon known as retrieval-induced forgetting. For example, after studying a list of category exemplar pairs ("Fruit-Pear," "Fruit-Apple"), a person is likely to forget the completion pairs ("Pear-Fruit," "Apple-Fruit"). A wealth of experiments have highlighted four key factors of this effect: partial pairings yield retrieval-induced forgetting; omit one of the elements in any of those pairs ("Pear-Fruit") yields no RIF despite the presence of a full completion pair; introduction of a new memory ("F. Pear") yields no RIF, and when present, the RIF effect can be abolished using independent cues. The specific cue used during learning (Norman \textit{et al.}, 1997; Anderson, 2003). These indicate feedbacks on a neural challenge for theory: what sort of memory system might yield these effects, and why?

Here we develop a quantitative theory of retrieval-induced forgetting by deriving new exact solutions to the dynamics of learning for the generalized perception-learning rule (GPLR) as it manifests memory in a highly recurrent neural network. These solutions yield closed-form expressions for the amount of RIF as a function of experimental parameters, and show that the GPLR is a hallmark of memory systems using a computationally optimal learning rule.

Recurrent network model

Generalized perception learning rule

- Memories stored in binary recurrent neural network
- All-to-all recurrent connections
- Patterns embedded as fixed points of network dynamics

\[
\Delta x_i(t) = \left(- \alpha x_i(t) + \sum_{j} w_{ij} x_j(t) + \sum_{k} p_k(t) \right) \delta(t)
\]

where α is the learning rate, $x_i(t)$ is the state of unit i, w_{ij} is the weight between units i and j, and $p_k(t)$ are the inputs to the network.

- Dependences on multiple experimental parameters:
 - Interconnection strengths
 - Input strengths
 - Learning rate

Exact solutions to the learning dynamics

We have found exact solutions for this setting as a function of α, β, γ, δ, ϵ, ζ, η, θ, and ϕ. The GPLR is known to obtain optimal storage capacity of 2N (C. G. K. Fisher learning (Gardner, 1988)).

Effect of practice type

- Consistent with experiment, partial practice yields RIF
- Reversed extra study yield no RIF, despite substantial target strengthening

Conclusions

- Theory points to a computational rationale for RIF: Phenomena relating to RIF are natural consequences of memory storage using a computationally optimal learning rule
- Makes quantitative, testable predictions for the exact degree of RIF as a function of parameters:
- First analytical model to capture the basic phenomenology of RIF
- Links neural plasticity to high-level psychological phenomena, showing how a network of neurons with local learning could combine to yield the behavioral patterns of RIF
- By virtue of its novel formulation, the model may address more recent neural data (Popper & Norman, 2010; Winter et al., 2010)
- Solutions methods employed may be generalizable to other emerging RIF phenomena such as reverse RIF, inhibition, and differentiation (Insdorf & Norman, 2014).

Support: A.M.S. is supported by a Swiss Postdoctoral Fellowship.