Math E-15 Homework 5

1. Find the derivative of each of the following functions.

 (a) \(y = \sin(7x) \)
 (b) \(y = 2\sin(7x) \)
 (c) \(y = \cos(2\sin(7x)) \)
 (d) \(y = \ln(\sin(x^3)) \)
 (e) \(y = \sqrt{\arctan(\log_{10}(5x))} \)
 (f) \(y = e^{3x} \cdot \tan(2x^4) \)
 (g) \(y = \sin(\cos(x \cdot 2^{3x})) \)
 (h) \(y = (1 + x^6)^{8x} \)
 (i) \(y = e^x + \ln 3 + \sin 4 + \arctan 5 \)

2. Consider the function \(f(x) = e^{-x^2} \).

 [Remember that \(e^{-x^2} \) means \(e^{-(x^2)} \), NOT \((e^{-x})^2 \) and that \(-x^2 \) means \(-(x^2) \), NOT \((-x)^2 \).]

 Note: Be sure to show enough work on parts (a) and (b) that it is clear to the grader how you used calculus (and not a graphing calculator or someone else’s paper) to do the problem.

 (a) On what interval(s) is \(f \) increasing? On what interval(s) is \(f \) decreasing?
 (b) On what interval(s) is \(f \) concave up? On what interval(s) is \(f \) concave down?
 (c) Sketch a graph of \(f \), labeling the points you found above.